- 初中數學勾股定理教案 推薦度:
- 相關推薦
初中數學勾股定理教案
作為一位無私奉獻的人民教師,常常需要準備教案,編寫教案有利于我們科學、合理地支配課堂時間。那么什么樣的教案才是好的呢?以下是小編精心整理的初中數學勾股定理教案,僅供參考,大家一起來看看吧。
初中數學勾股定理教案1
[教學分析]
勾股定理是揭示三角形三條邊數量關系的一條非常重要的性質,也是幾何中最重要的定理之一。它是解直角三角形的主要依據之一,同時在實際生活中具有廣泛的用途,“數學源于生活,又用于生活”正是這章書所體現的主要思想。教材在編寫時注意培養學生的動手操作能力和分析問題的能力,通過實際操作,使學生獲得較為直觀的印象;通過聯系比較、探索、歸納,幫助學生理解勾股定理,以利于進行正確的應用。
本節教科書從畢達哥拉斯觀察地面發現勾股定理的傳說談起,讓學生通過觀察計算一些以直角三角形兩條直角邊為邊長的小正方形的面積與以斜邊為邊長的正方形的面積的關系,發現兩直角邊為邊長的小正方形的面積的和,等于以斜邊為邊長的正方形的面積,從而發現勾股定理,這時教科書以命題的形式呈現了勾股定理。關于勾股定理的證明方法有很多,教科書正文中介紹了我國古人趙爽的證法。之后,通過三個探究欄目,研究了勾股定理在解決實際問題和解決數學問題中的應用,使學生對勾股定理的作用有一定的認識。
[教學目標]
一、知識與技能
1、探索直角三角形三邊關系,掌握勾股定理,發展幾何思維。
2、應用勾股定理解決簡單的實際問題
3學會簡單的合情推理與數學說理
二、過程與方法
引入兩段中西關于勾股定理的史料,激發同學們的興趣,引發同學們的思考。通過動手操作探索與發現直角三角形三邊關系,經歷小組協作與討論,進一步發展合作交流能力和數學表達能力,并感受勾股定理的應用知識。
三、情感與態度目標
通過對勾股定理歷史的了解,感受數學文化,激發學習興趣;在探究活動中,學生親自動手對勾股定理進行探索與驗證,培養學生的合作交流意識和探索精神,以及自主學習的能力。
四、重點與難點
1、探索和證明勾股定理
2、熟練運用勾股定理
[教學過程]
一、創設情景,揭示課題
1、教師展示圖片并介紹第一情景
以中國最早的一部數學著作——《周髀算經》的開頭為引,介紹周公向商高請教數學知識時的對話,為勾股定理的出現埋下伏筆。
周公問:“竊聞乎大夫善數也,請問古者包犧立周天歷度.夫天不可階而升,地不可得尺寸而度,請問數安從出?”商高答:“數之法出于圓方,圓出于方,方出于矩,矩出九九八十一,故折矩以為勾廣三,股修四,徑隅五。既方其外,半之一矩,環而共盤.得成三、四、五,兩矩共長二十有五,是謂積矩。故禹之所以治天下者,此數之所由生也。”
2、教師展示圖片并介紹第二情景
畢達哥拉斯是古希臘著名的數學家。相傳在2500年以前,他在朋友家做客時,發現朋友家用地磚鋪成的地面反映了直角三角形的某種特性。
二、師生協作,探究問題
1、現在請你也動手數一下格子,你能有什么發現嗎?
2、等腰直角三角形是特殊的直角三角形,一般的直角三角形是否也有這樣的特點呢?
3、你能得到什么結論嗎?
三、得出命題
勾股定理:如果直角三角形的兩直角邊長分別為a、b,斜邊長為c,那么,即直角三角形兩直角邊的平方和等于斜邊的平方。解釋:由于我國古代把直角三角形中較短的直角邊稱為勾,較長的邊稱為股,斜邊稱為弦,所以,把它叫做勾股定理。
四、勾股定理的證明
第一種方法:邊長為 的正方形可以看作是由4個直角邊分別為 、,斜邊為 的'直角三角形圍在外面形成的。因為邊長為 的正方形面積加上4個直角三角形的面積等于外圍正方形的面積,所以可以列出等式 ,化簡得 。
第二種方法:邊長為 的正方形可以看作是由4個直角邊分別為 、,斜邊為 的
角三角形拼接形成的(虛線表示),不過中間缺出一個邊長為 的正方形“小洞”。
因為邊長為 的正方形面積等于4個直角三角形的面積加上正方形“小洞”的面積,所以可以列出等式 ,化簡得 。
這種證明方法很簡明,很直觀,它表現了我國古代數學家趙爽高超的證題思想和對數學的鉆研精神,是我們中華民族的驕傲。
五、應用舉例,拓展訓練,鞏固反饋。
勾股定理的靈活運用勾股定理在實際的生產生活當中有著廣泛的應用。勾股定理的發現和使用解決了許多生活中的問題,今天我們就來運用勾股定理解決一些問題,你可以嗎?試一試。
例題:小明媽媽買了一部29英寸(74厘米)的電視機,小明量了電視機的屏幕后,發現屏幕只有58厘長和46厘米寬,他覺得一定是售貨員搞錯了,你同意他的想法嗎?你能解釋這是為什么嗎?
六、歸納總結
1、內容總結:探索直角三角形兩直角邊的平方和等于斜邊的平方,利于勾股定理,解決實際問題
2、方法歸納:數方格看圖找關系,利用面積不變的方法。用直角三角形三邊表示正方形的面積觀察歸納注意畫一個直角三角形表示正方形面積,再次驗證自己的發現。
七、討論交流
讓學生發表自己的意見,提出他們模糊不清的概念,給他們一個梳理知識的機會,通過提示性的引導,讓學生對勾股定理的概念豁然開朗,為后面勾股定理的應用打下基礎。
我們班的同學很聰明。大家很快就通過數格子發現了勾股定理的規律。還有什么地方不懂的嗎?跟大家一起來交流一下。請同學們課后在反思天地中都發表一下自己的學習心得。
初中數學勾股定理教案2
一、教學目標
【知識與技能】
理解并掌握勾股定理的逆定理,會應用定理判定直角三角形;理解勾股定理與勾股定理逆定理的區別與聯系;理解原命題和逆命題的概念,知道二者的關系及二者真假性的關系。
【過程與方法】
經歷得出猜想、推理證明的過程,提升自主探究、分析問題、解決問題的能力。
【情感、態度與價值觀】
體會事物之間的聯系,感受幾何的魅力。
二、教學重難點
【重點】勾股定理的逆定理及其證明。
【難點】勾股定理的逆定理的'證明。
三、教學過程
(一)導入新課
復習勾股定理,分清其題設和結論。
提問學生畫直角三角形的方法(可用尺類工具),然后要求不能用繩子以外的工具。
出示古埃及人利用等長的3、4、5個繩結間距畫直角三角形的方法,以其中蘊含何道理為切入點引出課題。
(二)講解新知
請學生思考3,4,5之間的關系,結合勾股定理的學習經驗明確
出示數據2.5cm,6cm,6.5cm,請學生計算驗證數據滿足上述平方和關系,并畫出相應邊長的三角形檢驗是否為直角三角形。
學生活動:同桌兩人一組,將三邊換成其他滿足上述平方和關系的數據,如4cm,7.5cm,8.5cm,畫出相應邊長的三角形檢驗是否為直角三角形。
初中數學勾股定理教案3
學習目標
1、通過拼圖,用面積的方法說明勾股定理的正確性.
2.探索勾股定理的過程,發展合情推理的能力,體會數型結合的思想。
重點難點
或學習建議學習重點:用面積的方法說明勾股定理的正確.
學習難點:勾股定理的應用.
學習過程教師
二次備課欄
自學準備與知識導學:
這是1955年希臘為紀念一位數學家曾經發行的郵票。
郵票上的圖案是根據一個著名的數學定理設計的。
學習交流與問題研討:
1、探索
問題:分別以圖中的直角三角形三邊為邊向三角形外
作正方形,小方格的面積看做1,求這三個正方形的面積?
S正方形BCED=S正方形ACFG=S正方形ABHI=
發現:
2、實驗
在下面的方格紙上,任意畫幾個頂點都在格點上的三角形;并分別以這個三角形的各邊為一邊向三角形外做正方形并計算出正方形的面積。
請完成下表:
S正方形BCEDS正方形ACFGS正方形ABHIS正方形BCED、S正方形ACFG、S正方形ABHI的關系
112
145
41620
91625
發現:
如何用直角三角形的'三邊長來表示這個結論?
這個結論就是我們今天要學習的勾股定理:
如圖:我國古代把直角三角形中,較短的直角邊叫做“勾”,較長的直角邊叫做“股”,斜邊叫做“弦”,所以勾股定理可表示為:弦股還可以表示為:或勾
練習檢測與拓展延伸:
練習1、求下列直角三角形中未知邊的長
練習2、下列各圖中所示的線段的長度或正方形的面積為多少。
(注:下列各圖中的三角形均為直角三角形)
例1、如圖,在四邊形中,∠,∠,求.
檢測:
1、在Rt△ABC中,∠C=90°(1)若a=5,b=12,則c=________;
(2)b=8,c=17,則S△ABC=________。
2、在Rt△ABC中,∠C=90,周長為60,斜邊與一條直角邊之比為13∶5,則這個三角形三邊長分別是()
A、5、4、3、;B、13、12、5;C、10、8、6;D、26、24、10
3、若等腰三角形中相等的兩邊長為10cm,第三邊長為16cm,那么第三邊上的高為()
A.12cmB.10cmC.8cmD.6cm
4、要登上8m高的建筑物,為了安全需要,需使梯子底端離建筑物6m,至少需要多長的梯子?(畫出示意圖)
5、飛機在空中水平飛行,某一時刻剛好飛到一個男孩頭頂正上方4千米處,過了20秒,飛機距離這個男孩5千米,飛機每小時飛行多少千米?
課后反思或經驗總結:
1、什么叫勾股定理;
2、什么樣的三角形的三邊滿足勾股定理;
3、用勾股定理解決一些實際問題。
初中數學勾股定理教案4
一、內容和內容解析
1。內容
應用勾股定理及勾股定理的逆定理解決實際問題。
2。內容解析
運用勾股定理的逆定理可以從三角形邊的數量關系來識別三角形的形狀,它是用代數方法來研究幾何圖形,也是向學生滲透“數形結合”這一數學思想方法的很好素材。綜合運用勾股定理及其逆定理能幫助我們解決實際問題。
基于以上分析,可以確定本課的教學重點是靈活運用勾股定理的逆定理解決實際問題。
二、目標和目標解析
1。目標
(1)靈活應用勾股定理及逆定理解決實際問題。
。2)進一步加深性質定理與判定定理之間關系的認識。
2。目標解析
達成目標(1)的標志是學生通過合作、討論、動手實踐等方式,在應用題中建立數學模型,準確畫出幾何圖形,再熟練運用勾股定理逆定理判斷三角形狀及求邊長、面積、角度等;
目標(2)能先用勾股定理的逆定理判斷一個三角形是直角三角形,再用勾股定理及直角三角形的性質進行有關的計算和證明。
三、教學問題診斷分析
對于大部分學生將實際問題抽象成數學模型并進行解析與應用,有一定的困難,所以在教學時應該注意啟發引導學生從實際生活中所遇到的問題出發,鼓勵學生以勾股定理及逆定理的知識為載體建立數學模型,利用數學模型去解決實際問題。
本課的教學難點是靈活運用勾股定理及逆定理解決實際問題。
四、教學過程設計
1。復習反思,引出課題
問題1 通過前面的學習,我們對勾股定理及其逆定理的知識有一定的了解,請說出勾股定理及其逆定理的內容。
師生活動:學生回答勾股定理的內容“如果直角三角形的兩條直角邊長分別為,斜邊長為,那么;勾股定理的逆定理“如果三角形的三邊長滿足,那么這個三角形是直角三角形。
追問:你能用勾股定理及逆定理解決哪些問題?
師生活動:學生通過思考舉手回答,教師板書課題。
【設計意圖】通過復習勾股定理及其逆定理來引入本課時的學習任務——應用勾股定理及逆定理解決有關實際問題。
2。 點擊范例,以練促思
問題2 某港口位于東西方向的海岸線上。“遠航”號、“海天”號輪船同時離開港口,各自沿一固定方向航行,“遠航”號每小時航行16海里,“海天”號每小時航行12海里。它們離開港口一個半小時后相距30海里。如果知道“遠航”號沿東北方向航行,能知道“海天”號沿哪個方向航行嗎?
師生活動:學生讀題,理解題意,弄清楚已知條件和需解決的問題,教師通過梯次性問題的展示,適時點撥,學生嘗試畫圖、估測、交流中分化難點完成解答。
追問1:請同學們認真審題,弄清已知是什么?解決的問題是什么?
師生活動:學生通過思考舉手回答,教師在黑板上列出:已知兩種船的航速,它們的'航行時間以及相距的路程, “遠航”號的航向——東北方向;解決的問題是“海天”號的航向。
追問2:你能根據題意畫出圖形嗎?
師生活動:學生嘗試畫圖,教師在黑板上或多媒體中畫出示意圖。
追問3:在所畫的圖中哪個角可以表示“海天”號的航向?圖中知道哪個角的度數?
師生活動:學生小組討論交流回答問題“海天”號的航向只要能確定∠QPR的大小即可。組內討論解答,小組代表展示解答過程,教師適時點評,多媒體展示規范解答過程。
解:根據題意,
因為
,即
,所以
由“遠航”號沿東北方向航行可知
。因此
,即“海天”號沿西北方向航行。
課堂練習1。 課本33頁練習第3題。
課堂練習2。 在
港有甲、乙兩艘漁船,若甲船沿北偏東
方向以每小時8海里速度前進,乙船沿南偏東某方向以每小時15海里速度前進,1小時后甲船到達
島,乙船到達
島,且
島與
島相距17海里,你能知道乙船沿哪個方向航行嗎?
【設計意圖】學生在規范化的解答過程及練習中,提升對勾股定理逆定理的認識以及實際應用的能力。
3。 補充訓練,鞏固新知
問題3 實驗中學有一塊四邊形的空地
若每平方米草皮需要200元,問學校需要投入多少資金購買草皮?
師生活動:先由學生獨立思考。若學生有想法,則由學生先說思路,然后教師追問:你是怎么想到的?對學生思路中的合理成分進行總結;若學生沒有思路,教師可引導學生分析:從所要求的結果出發是要知道四邊形的面積,而四邊形被它的一條對角線分成兩個三角形,求出兩個三角形的面積和即可。啟發學生形成思路,最后由學生演板完成。
【設計意圖】引導學生利用輔助線解決問題,進一步養成利用勾股定理的逆定理解決實際問題的意識。
4。 反思小結,觀點提煉
教師引導學生參照下面兩個方面,回顧本節課所學的主要內容,進行相互交流:
。1)知識總結:勾股定理以及逆定理的實際應用;
。2)方法歸納:數學建模的思想。
【設計意圖】通過小結,梳理本節課所學內容,總結方法,體會思想。
5。布置作業
教科書34頁習題17。2第3題,第4題,第5題,第6題。
五、目標檢測設計
1。小明在學校運動會上負責聯絡,他先從檢錄處走了75米到達起點,又從起點向東走了100米到達終點,最后從終點走了125米,回到檢錄處,則他開始走的方向是(假設小明走的每段都是直線) ( )
A。南北 B。東西 C。東北 D。西北
【設計意圖】考查運用勾股定理的逆定理解決實際生活問題。
2。甲、乙兩船同時從
港出發,甲船沿北偏東
的方向,以每小時9海里的速度向
島駛去,乙船沿另一個方向,以每小時12海里的速度向
島駛去,3小時后兩船同時到達了目的地。如果兩船航行的速度不變,且
兩島相距45海里,那么乙船航行的方向是南偏東多少度?
【設計意圖】考查建立數學模型,準確畫出幾何圖形,運用勾股定理的逆定理解決實際生活問題。
3。如圖是一塊四邊形的菜地,已知
求這塊菜地的面積。
【設計意圖】考查利用勾股定理及逆定理將不規則圖形轉化為直角三角形,巧妙地求解。
初中數學勾股定理教案5
【學習目標】
能運用勾股定理及直角三角形的判別條件解決簡單的實際問題.
【學習重點】
勾股定理及直角三角形的判別條件的運用.
【學習重點】
直角三角形模型的建立.
【學習過程】
一.課前復習
勾股定理及勾股定理逆定理的區別
二.新課學習
探究點一:螞蟻沿圓柱側面爬行的最短路徑問題
1.3如圖,有一個圓柱,它的高等于12cm,底面圓的周長是18cm.在圓柱下底面的A點有一只螞蟻,它想吃到上底面上與A點相對的B點處的食物,沿圓柱側面爬行的最短路程是多少?
思考:
1.利用學具,嘗試從A點到B點沿圓柱側面畫出幾條線路,你認為
這樣的線路有幾條?可分為幾類?
2.將右圖的圓柱側面剪開展開成一個長方形,B點在什么位置?從
A點到B點的最短路線是什么?你是如何畫的?
1.33.螞蟻從A點出發,想吃到B點上的食物,它沿圓柱側面爬行的最短路程是多少?你是如何解答這個問題的?畫出圖形,寫出解答過程。
4.你是如何將這個實際問題轉化為數學問題的?
小結:
你是如何解決圓柱體側面上兩點之間的最短距離問題的?
探究點二:利用勾股定理逆定理如何判斷兩線垂直?
1.31.31.3李叔叔想要檢測雕塑底座正面的AD邊和BC邊是否分別垂直底邊AB,但他隨身只帶了卷尺。(參看P13頁雕塑圖1-13)
。1)你能替他想辦法完成任務嗎?
1.31.3(2)李叔叔量得AD的長是30cm,AB的長是40cm,BD長是50cm.AD邊垂直于AB邊嗎?你是如何解決這個問題的?
。3)小明隨身只有一個長度為20cm的刻度尺,他能有辦法檢驗AD邊是否垂直于AB邊嗎?BC邊與AB邊呢?
小結:通過本道例題的探索,判斷兩線垂直,你學會了什么方法?
探究點三:利用勾股定理的方程思想在實際問題中的應用
例圖1-14是一個滑梯示意圖,若將滑道AC水平放置,則剛好與AB一樣長.已知滑梯的高度CE=3m,CD=1m,試求滑道AC的長.
1.3
思考:
1.求滑道AC的長的問題可以轉化為什么數學問題?
2.你是如何解決這個問題的?寫出解答過程。
小結:
方程思想是勾股定理中的重要思想,勾股定理反應的直角三角形三邊的關系正是構建方程的基礎.
四.課堂小結:本節課你學到了什么?
三.新知應用
1.如圖,臺階A處的螞蟻要爬到B處搬運食物,它怎么走最近?并求出最近距離.
1.3
2.如圖,在水池的正中央有一根蘆葦,池底長10尺,它高出水而1尺,如果把這根蘆葦拉向水池一邊,它的頂端恰好到達池邊的水面則這根蘆葦的'長度是()
1.3
五.作業布置:習題1.41,3,4題
【反思】
一、教師我的體會:
、、我根據學生實際情況認真備課這節課,書本總共兩個例題,且兩個例題都很難,如果一節課就講這兩題難題,那一方面學生的學習效率會比較低,另一方面會使學生畏難情緒增加。所以,我簡化教材,使教材易于操作,讓學生易于學習,有利于學生學習新知識、接受新知識,降低學習難度。
把教材讀薄,②、除了備教材外,還備學生。從教案及授課過程也可以看出,充分考慮到了學生的年齡特點:對新事物有好奇心,但對新知識的鉆研熱情又不夠高,這樣,造成教學難度較大,為了改變這一狀況,在處理教材時,把某些數學語言轉換成通俗文字來表達,把難度大的運用能力降低為難度稍細的理解能力,讓學生樂于面對奧妙而又有一定深度的數學,樂于學習數學。
、、新課選用的例子、練習,都是經過精心挑選的,運用性強,貼近生活,與生活實際緊密聯系,既達到學習、鞏固新知識的目的,同時,又充分展現出數學教學的重大特征:數學源于生活實際,又服務于生活實際。勾股定理源于生活,但同時它又能極大的為生活服務。
、、使用多媒體進行教學,使知識顯得形象直觀,充分發揮現代技術作用。
二、學生體會:
課前,我們也去查閱了一些資料,關于勾股定理的證明以及有關的一些應用,通過這節課,真真發現勾股定理真真來源于生活,我們的幾何圖形和幾何計算對于勾股定理來說非常廣泛,而且以后更要用好它。對于勾股定理都應用時,我覺得關鍵是找到相關的三角形,并且分清直角邊或斜邊,靈活機智地進行計算和一些推理。另外與同學間在數學課上有自主學習的機會,有相互之間的討論、爭辯等協作的機會,在合作學習的過程中共同提高我覺得都是難得的機會。鍛煉了能力,提高了思維品質,并且勾股定理的應用中我覺得圖形很美,古代的數學家已經有了很好的研究并作出了很大的貢獻,現代的藝術家們也在各方面用到很多,同時在課堂中漸漸地培養了我們的數學興趣和一定的思維能力。
不過課堂上老師在最后一題的畫圖中能放一放,讓我們有時間去思考怎么畫,那會更好些,自然思維也得到了發展。課上老師鼓勵我們嘗試不完善的甚至錯誤的意見,大膽發表自己的見解,體現了我們是學習的主人。數學課堂里充滿了智慧。
初中數學勾股定理教案6
教學 目標:
(1)理解通分的意義,理解最簡公分母的意義;
(2)掌握分式的通分法則,能熟練掌握通分運算。
教學 重點:
分式通分的理解和掌握。
教學 難點:
分式通分中最簡公分母的確定。
教學 工具:
投影儀
教學 方法:
啟發式、討論式
教學 過程 :
。ㄒ唬┮
。1)如何計算:
由此讓學生復習分數通分的意義、通分的根據、通分的法則以及最簡公分母的概念。
。2)如何計算:
。3)何計算:
引導學生思考,猜想如何求解?
(二)新課
1、類比分數的通分得到分式的通分:
把幾個異分母的分式分別化成與原來的分式相等的'同分母的分式,叫做分式的 通分 .
注意:通分保證
。1)各分式與原分式相等;
。2)各分式分母相等。
2.通分的依據:分式的基本性質.
3.通分的關鍵:確定幾個分式的最簡公分母.
通常取各分母的所有因式的最高次冪的積作最簡公分母,這樣的公分母叫做 最簡公分母 .
根據分式通分和最簡公分母的定義,將分式xx ,xx,xx 通分:
最簡公分母為:xx ,然后根據分式的基本性質,分別對原來的各分式的分子和分母乘一個適當的整式,使各分式的分母都化為xx。通分如下:
通過本例使學生對于分式的通分大致過程和思路有所了解。讓學生歸納通分的思路過程。
例1 通分:
。1)xx,xx,xx ;
分析:讓學生找分式的公分母,可設問“分母的系數各不相同如何解決?”,依據分數的通分找最小公倍數。
解:∵ 最簡公分母是12xy 2
小結:各分母的系數都是整數時,通常取它們的系數的最小公倍數作為最簡公分母的系數.
解:∵最簡公分母是10a 2 b 2 c 2
由學生歸納最簡公分母的思路。
分式通分中求最簡公分母概括為:
。1)取各分母系數的最小公倍數;
(2)凡出現的字母為底的冪的因式都要;
(3)相同字母的冪的因式取指數最大的。
取這些因式的積就是最簡公分母。
【初中數學勾股定理教案】相關文章:
初中數學勾股定理教案(精選12篇)07-16
勾股定理教案05-30
勾股定理教案10-27
勾股定理教案精品[15篇]07-14
數學初中教案11-18
《勾股定理的應用》教案(通用8篇)10-21
初中數學教案05-28
初中數學教案11-04
初中數學優秀教案02-06
初中數學優秀教案12-30