免费无码作爱视频,女厕厕露p撒尿八个少妇,精品人妻av区乱码,国产aⅴ爽av久久久久久

八年級數學教案

時間:2022-11-13 09:56:48 教案 我要投稿

八年級數學教案(15篇)

  作為一名默默奉獻的教育工作者,通常會被要求編寫教案,編寫教案有利于我們準確把握教材的重點與難點,進而選擇恰當的教學方法。我們應該怎么寫教案呢?以下是小編精心整理的八年級數學教案,歡迎大家借鑒與參考,希望對大家有所幫助。

八年級數學教案(15篇)

八年級數學教案1

  菱形

  學習目標(學習重點):

  1.經歷探索菱形的識別方法的過程,在活動中培養探究意識與合作交流的習慣;

  2.運用菱形的識別方法進行有關推理.

  補充例題:

  例1. 如圖,在△ABC中,AD是△ABC的角平分線。DE∥AC交AB于E,DF∥AB交AC于F.四邊形AEDF是菱形嗎?說明你的理由.

  例2.如圖,平行四邊形ABCD的對 角線AC的.垂直平分線與邊AD、BC分別交于E、F.

  四邊形AFCE是菱形嗎?說明理由.

  例3.如圖 , ABCD是矩形紙片,翻折B、D,使BC、AD恰好落在AC上,設F、H分別是B、D落在AC上的兩點,E、G分別是折痕CE、AG與AB、CD的交點

  (1)試說明四邊形AECG是平行四邊形;

  (2)若AB=4cm,BC=3cm,求線段EF的長;

  (3)當矩形兩邊AB、BC具備怎樣的關系時,四邊形AECG是菱形.

  課后續助:

  一、填空題

  1.如果四邊形ABCD是平行四邊形,加上條件___________________,就可以是矩形;加上條件_______________________,就可以是菱形

  2.如圖,D、E、F分別是△ABC的邊BC、CA、AB上的點,

  且DE∥BA,DF∥ CA

  (1)要使四邊形AFDE是菱形,則要增加條件______________________

  (2)要使四邊形AFDE是矩形,則要增加條件______________________

  二、解答題

  1.如圖,在□ABCD中 ,若2,判斷□ABCD是矩形還是菱形?并說明理由。

  2.如圖 ,平行四邊形A BCD的兩條對角線AC,BD相交于點O,OA=4,OB=3,AB=5.

  (1) AC,BD互相垂直嗎?為什么?

  (2) 四邊形ABCD是菱形 嗎?

  3.如圖,在□ABCD中,已知ADAB,ABC的平分線交AD于E,EF∥AB交BC于F,試問: 四 邊形ABFE是菱形嗎?請說明理由。

  4.如圖,把一張矩形的紙ABCD沿對角線BD折疊,使點C落在點E處,BE與AD交于點F.

  ⑴求證:ABF≌

  ⑵若將折疊的圖形恢復原狀,點F與BC邊上的點M正好重合,連接DM,試判斷四邊形BMDF的形狀,并說明理由.

八年級數學教案2

  一、教學內容:

  本節內容是人教版教材八年級上冊,第十四章第2節乘法公式的第二課時——完全平方公式。

  二、教材分析:

  完全平方公式是乘法公式的重要組成部分,也是乘法運算知識的升華,它是在學生學習整式乘法后,對多項式乘法中出現的一種特殊的算式的總結,體現了從一般到特殊的思想方法。完全平方公式是學生后續學好因式分解、分式運算的必備知識,它還是配方法的基本模式,為以后學習一元二次方程、函數等知識奠定了基礎,所以說完全平方公式屬于代數學的基礎地位。

  本節課內容是在學生掌握了平方差公式的基礎上,研究完全平方公式的推導和應用,公式的發現與驗證為學生體驗規律探索提供了一種較好的模式,培養學生逐步形成嚴密的邏輯推理能力。完全平方公式的學習對簡化某些代數式的運算,培養學生的求簡意識很有幫助。使學生了解到完全平方公式是有力的數學工具。

  重點:掌握完全平方公式,會運用公式進行簡單的計算。

  難點:理解公式中的字母含義,即對公式中字母a、b的理解與正確應用。

  三、教學目標

  (1)經歷探索完全平方公式的推導過程,掌握完全平方公式,并能正確運用公式進行簡單計算。

  (2)進一步發展學生的符號感和推理能力,了解公式的幾何背景,感受數與形之間的聯系,學會獨立思考。

  (3)通過推導完全平方公式及分析結構特征,培養學生觀察、分析、歸納的能力,學會與他人合作交流,體驗解決問題的`多樣性。

  (4)體驗完全平方公式可以簡化運算從而激發學生的學習興趣;在自主探究、合作交流的學習過程中獲得體驗成功的喜悅,增強學習數學的自信心。

  四、學情分析與教法學法

  學情分析:課程標準提出數學教學活動必須建立在學生的認知發展水平和已有的知識經驗基礎之上,本節課就是在前面的學習中,學生已經掌握了整式的乘法運算及平方差公式的基礎上開展的,具備了初步的總結歸納能力。另外,14歲的中學生充滿了好奇心,有較強的求知欲、創造欲、表現欲,所以只有能調動學生的學習熱情,本節內容才較易掌握。但八年級學生的探究能力有差異,邏輯推理能力也有待于提高,而且易粗心馬虎,這都是本節課要注意的問題。

  學法:以自主探究為主要學習方式,使學生在獨立思考、歸納總結、合作交流

  總結反思中獲得數學知識與技能。

  教法:以啟發引導式為主要教學方式,在引導探究、歸納總結、典例精析、合作交流的教學過程中,教師做好組織者和引導者,讓學生在老師的指導下處于主動探究的學習狀態。

  五、教學過程

  (略)

  六、教學評價

  在教學中,教師在精心設置教學環節中,做到以學生為主體,做好組織者和引導者,全面評價學生在知識技能、數學思考、問題解決和情感態度等方面的表現。教師通過情境引入、提供問題引導學生從已有的知識為出發點,自主探究,發現問題,深入思考。學生解決問題要以獨立思考為主,當遇到困難時學會求助交流,教師也要給學生思考交流的時間,讓學生經歷得出結論的過程,培養發現問題解決問題的能力。

  在整個學習過程中,通過對學生參與自主探究的程度、合作交流的意識以及獨立思考的習慣,發現問題的能力進行評價,并對學生的想法或結論給予鼓勵評價。

八年級數學教案3

  一、學情分析

  本學期本人繼續擔任八年級(2)班的數學教學工作,八年級是初中學習過程中的關鍵時期,學生基礎的好壞,直接影響到將來是否能升學。從上期期末考試的成績來看1班、2班的成績差異很大,2班有少數學生不上進,思維不緊跟老師,有部分同學基礎較差,問題較嚴重。要在本期獲得理想成績,老師和學生都要付出努力,查漏補缺,充分發揮學生是學習的主體,教師是教的主體作用,注重方法,培養能力。

  二、教材分析

  本學期教學內容共計五章,知識的前后聯系,教材的教學目標,重、難點分析如下:

  第十七章分式

  本章的主要內容包括:分式的概念,分式的基本性質,分式的約分與通分,分式的加、減、乘、除運算,整數指數冪的概念及運算性質,分式方程的概念及可化為一元一次方程的分式方程的解法。

  第十八章函數及其圖像

  函數是研究現實世界變化規律的一個重要模型,本單元學生在學習了一次函數后,進一步研究反比例函數。學生在本章中經歷:反比例函數概念的抽象概括過程,體會建立數學模型的思想,進一步發展學生的抽象思維能力;經歷反比例函數的圖象及其性質的探索過程,在交流中發展能力這是本章的重點之一;經歷本章的重點之二:利用反比例函數及圖象解決實際問題的`過程,發展學生的數學應用能力;經歷函數圖象信息的識別應用過程,發展學生形象思維;能根據所給信息確定反比例函數表達式,會作反比例函數圖象,并利用它們解決簡單的實際問題。本章的難點在于對學生抽象思維的培養,以及提高數形結合的意識和能力。

  第十九章全等三角形

  本章主要內容是探索三角形全等的判定方法,領略推理證明的奧秘,由于三角形全等的判定方法與全等三角形的性質具有“互逆”的特點,所以本章因勢利導,介紹了命題與定理、逆命題與逆命題的有關知識。此外,本章教材最后還介紹了幾種常用的基本作圖和簡單的尺規作圖的方法。

  第二十章平行四邊形的判定

  本章的內容包括平行四邊形的判定;矩形、菱形、正方形等幾種特殊平行四邊形的判定;等腰梯形的判定等幾個部分。本章首先通過回顧平行四邊形的性質,由性質引出判定方法,在此基礎上,學習矩形、菱形、正方形等特殊平行四邊形的判定,最后介紹了等腰梯形的判定與應用。本章知識是在學習了平行線、三角形、平行四邊形的性質等知識的基礎上的進一步深化和提高,是今后學習其他幾何知識的基礎。

  第二十一章數據的整理與初步處理

  本章主要研究平均數、中位數、眾數以及極差、方差等統計量的統計意義,學習如何利用這些統計量分析數據的集中趨勢和離散情況,并通過研究如何用樣本的平均數和方差估計總體的平均數和方差,進一步體會用樣本估計總體的思想。

  三、提高學科教育質量的主要措施:

  1、認真做好教學六認真工作。把教學六認真作為提高成績的主要方法,認真研讀新課程標準,鉆研新教材,根據新課程標準,擴充教材內容,認真上課,批改作業,認真輔導,認真制作測試試卷,也讓學生學會認真學習。

  2、興趣是最好的老師,愛因斯坦如是說。激發學生的興趣,給學生介紹數學家,數學史,介紹相應的數學趣題,給出數學課外思考題,激發學生的興趣。

  3、引導學生積極參與知識的構建,營造民主、和諧、平等、自主、探究、合作、交流、分享發現快樂的高效的學習課堂,讓學生體會學習的快樂,享受學習。引導學生寫小論文,寫復習提綱,使知識來源于學生的構造。

  4、引導學生積極歸納解題規律,引導學生一題多解,多解歸一,培養學生透過現象看本質,提高學生舉一反三的能力,這是提高學生素質的根本途徑之一,培養學生的發散思維,讓學生處于一種思如泉涌的狀態。

  5、運用新課程標準的理念指導教學,積極更新自己腦海中固有的教育理念,不同的教育理念將帶來不同的教育效果。

  6、培養學生良好的學習習慣,陶行知說:教育就是培養習慣,有助于學生穩步提高學習成績,發展學生的非智力因素,彌補智力上的不足。

  7、指導成立“課外興趣小組”的民間組織,開展豐富多彩的課外活動,開展對奧數題的研究,課外調查,操作實踐,帶動班級學生學習數學,同時發展這一部分學生的特長。

  8、開展分層教學,布置作業設置A、B、C三類分層布置分別適合于差、中、好三類學生,課堂上的提問照顧好好、中、差三類學生,使他們都等到發展。

  9、進行個別輔導,優生提升能力,扎實打牢基礎知識,對差生,一些關鍵知識,輔導差生過關,為差生以后的發展鋪平道路。

  10、培養學生學習數學的良好習慣。這些習慣包括:

  ①認真做作業的習?包括作業前清理好桌面,作業后認真檢查;

  ②預習的習慣;

  ③認真看批改后的作業并及時更正的習慣;

  ④認真做好課前準備的習慣;

  ⑤在書上作精要筆記的習慣;

  ⑥妥善保管書籍資料和學習用品的習慣;

  ⑦認真閱讀數學教材的習慣。

八年級數學教案4

  第11章平面直角坐標系

  11。1平面上點的坐標

  第1課時平面上點的坐標(一)

  教學目標

  【知識與技能】

  1。知道有序實數對的概念,認識平面直角坐標系的相關知識,如平面直角坐標系的構成:橫軸、縱軸、原點等。

  2。理解坐標平面內的點與有序實數對的一一對應關系,能寫出給定的平面直角坐標系中某一點的坐標。已知點的坐標,能在平面直角坐標系中描出點。

  3。能在方格紙中建立適當的平面直角坐標系來描述點的位置。

  【過程與方法】

  1。結合現實生活中表示物體位置的例子,理解有序實數對和平面直角坐標系的作用。

  2。學會用有序實數對和平面直角坐標系中的點來描述物體的位置。

  【情感、態度與價值觀】

  通過引入有序實數對、平面直角坐標系讓學生體會到現實生活中的問題的解決與數學的發展之間有聯系,感受到數學的價值。

  重點難點

  【重點】

  認識平面直角坐標系,寫出坐標平面內點的坐標,已知坐標能在坐標平面內描出點。

  【難點】

  理解坐標系中的坐標與坐標軸上的數字之間的關系。

  教學過程

  一、創設情境、導入新知

  師:如果讓你描述自己在班級中的位置,你會怎么說?

  生甲:我在第3排第5個座位。

  生乙:我在第4行第7列。

  師:很好!我們買的電影票上寫著幾排幾號,是對應某一個座位,也就是這個座位可以用排號和列號兩個數字確定下來。

  二、合作探究,獲取新知

  師:在以上幾個問題中,我們根據一個物體在兩個互相垂直的方向上的數量來表示這個物體

  的位置,這兩個數量我們可以用一個實數對來表示,但是,如果(5,3)表示5排3號的話,那么(3,5)表示什么呢?

  生:3排5號。

  師:對,它們對應的不是同一個位置,所以要求表示物體位置的這個實數對是有序的。誰來說說我們應該怎樣表示一個物體的位置呢?

  生:用一個有序的實數對來表示。

  師:對。我們學過實數與數軸上的點是一一對應的,有序實數對是不是也可以和一個點對應起來呢?

  生:可以。

  教師在黑板上作圖:

  我們可以在平面內畫兩條互相垂直、原點重合的數軸。水平的數軸叫做x軸或橫軸,取向右為

  正方向;豎直的數軸叫做y軸或縱軸,取向上為正方向;兩軸交點為原點。這樣就構成了平面直角坐標系,這個平面叫做坐標平面。

  師:有了平面直角坐標系,平面內的點就可以用一個有序實數對來表示了。現在請大家自己動手畫一個平面直角坐標系。

  學生操作,教師巡視。教師指正學生易犯的錯誤。

  教師邊操作邊講解:

  如圖,由點P分別向x軸和y軸作垂線,垂足M在x軸上的坐標是3,垂足N在y軸上的坐標是5,我們就說P點的橫坐標是3,縱坐標是5,我們把橫坐標寫在前,縱坐標寫在后,(3,5)就是點P的坐標。在x軸上的點,過這點向y軸作垂線,對應的`坐標是0,所以它的縱坐標就是0;在y軸上的點,過這點向x軸作垂線,對應的坐標是0,所以它的橫坐標就是0;原點的橫坐標和縱坐標都是0,即原點的坐標是(0,0)。

  教師多媒體出示:

  師:如圖,請同學們寫出A、B、C、D這四點的坐標。

  生甲:A點的坐標是(—5,4)。

  生乙:B點的坐標是(—3,—2)。

  生丙:C點的坐標是(4,0)。

  生丁:D點的坐標是(0,—6)。

  師:很好!我們已經知道了怎樣寫出點的坐標,如果已知一點的坐標為(3,—2),怎樣在平面直角坐標系中找到這個點呢?

  教師邊操作邊講解:

  在x軸上找出橫坐標是3的點,過這一點向x軸作垂線,橫坐標是3的點都在這條直線上;在y軸上找出縱坐標是—2的點,過這一點向y軸作垂線,縱坐標是—2的點都在這條直線上;這兩條直線交于一點,這一點既滿足橫坐標為3,又滿足縱坐標為—2,所以這就是坐標為(3,—2)的點。下面請同學們在方格紙中建立一個平面直角坐標系,并描出A(2,—4),B(0,5),C(—2,—3),D(—5,6)這幾個點。

  學生動手作圖,教師巡視指導。

  三、深入探究,層層推進

  師:兩個坐標軸把坐標平面劃分為四個區域,從x軸正半軸開始,按逆時針方向,把這四個區域分別叫做第一象限、第二象限、第三象限和第四象限。注意:坐標軸不屬于任何一個象限。在同一象限內的點,它們的橫坐標的符號一樣嗎?縱坐標的符號一樣嗎?

  生:都一樣。

  師:對,由作垂線求坐標的過程,我們知道第一象限內的點的橫坐標的符號為+,縱坐標的符號也為+。你能說出其他象限內點的坐標的符號嗎?

  生:能。第二象限內的點的坐標的符號為(—,+),第三象限內的點的坐標的符號為(—,—),第四象限內的點的坐標的符號為(+,—)。

  師:很好!我們知道了一點所在的象限,就能知道它的坐標的符號。同樣的,我們由點的坐標也能知道它所在的象限。一點的坐標的符號為(—,+),你能判斷這點是在哪個象限嗎?

  生:能,在第二象限。

  四、練習新知

  師:現在我給出幾個點,你們判斷一下它們分別在哪個象限。

  教師寫出四個點的坐標:A(—5,—4),B(3,—1),C(0,4),D(5,0)。

  生甲:A點在第三象限。

  生乙:B點在第四象限。

  生丙:C點不屬于任何一個象限,它在y軸上。

  生丁:D點不屬于任何一個象限,它在x軸上。

  師:很好!現在請大家在方格紙上建立一個平面直角坐標系,在上面描出這些點。

  學生作圖,教師巡視,并予以指導。

  五、課堂小結

  師:本節課你學到了哪些新的知識?

  生:認識了平面直角坐標系,會寫出坐標平面內點的坐標,已知坐標能描點,知道了四個象限以及四個象限內點的符號特征。

  教師補充完善。

  教學反思

  物體位置的說法和表述物體的位置等問題,學生在實際生活中經常遇到,但可能沒有想到這些問題與數學的聯系。教師在這節課上引導學生去想到建立一個平面直角坐標系來表示物體的位置,讓學生參與到探索獲取新知的活動中,主動學習思考,感受數學的魅力。在教學中我讓學生由生活中的實例與坐標的聯系感受坐標的實用性,增強了學生學習數學的興趣。

  第2課時平面上點的坐標(二)

  教學目標

  【知識與技能】

  進一步學習和應用平面直角坐標系,認識坐標系中的圖形。

  【過程與方法】

  通過探索平面上的點連接成的圖形,形成二維平面圖形的概念,發展抽象思維能力。

  【情感、態度與價值觀】

  培養學生的合作交流意識和探索精神,體驗通過二維坐標來描述圖形頂點,從而描述圖形的方法。

  重點難點

  【重點】

  理解平面上的點連接成的圖形,計算圍成的圖形的面積。

  【難點】

  不規則圖形面積的求法。

  教學過程

  一、創設情境,導入新知

  師:上節課我們學習了平面直角坐標系的概念,也學習了已知點的坐標,怎樣在平面直角坐標系中把這個點表示出來。下面請大家在方格紙上建立一個平面直角坐標系,并在上面標出A(5,1),B(2,1),C(2,—3)這三個點。

  學生作圖。

  教師邊操作邊講解:

  二、合作探究,獲取新知

  師:現在我們把這三個點用線段連接起來,看一下得到的是什么圖形?

  生甲:三角形。

  生乙:直角三角形。

  師:你能計算出它的面積嗎?

  生:能。

  教師挑一名學生:你是怎樣算的呢?

  生:AB的長是5—2=3,BC的長是1—(—3)=4,所以三角形ABC的面積是×3×4=6。

  師:很好!

  教師邊操作邊講解:

  大家再描出四個點:A(—1,2),B(—2,—1),C(2,—1),D(3,2),并將它們依次連接起來看看形成的是什么

  圖形?

  學生完成操作后回答:平行四邊形。

  師:你能計算它的面積嗎?

  生:能。

  教師挑一名學生:你是怎么計算的呢?

  生:以BC為底,A到BC的垂線段AE為高,BC的長為4,AE的長為3,平行四邊形的面積就是4×3=12。師:很好!剛才是已知點,我們將它們順次連接形成圖形,下面我們來看這樣一個連接成的圖形:

  教師多媒體出示下圖:

八年級數學教案5

  一、教學目標

  1.使學生理解并掌握分式的概念,了解有理式的概念;

  2.使學生能夠求出分式有意義的條件;

  3.通過類比分數研究分式的教學,培養學生運用類比轉化的思想方法解決問題的能力;

  4.通過類比方法的教學,培養學生對事物之間是普遍聯系又是變化發展的辨證觀點的'再認識.

  二、重點、難點、疑點及解決辦法

  1.教學重點和難點 明確分式的分母不為零.

  2.疑點及解決辦法 通過類比分數的意義,加強對分式意義的理解.

  三、教學過程

  【新課引入】

  前面所研究的因式分解問題是把整式分解成若干個因式的積的問題,但若有如下問題:某同學分鐘做了60個仰臥起坐,每分鐘做多少個?可表示為,問,這是不是整式?請一位同學給它試命名,并說一說怎樣想到的?(學生有過分數的經驗,可猜想到分式)

  【新課】

  1.分式的定義

  (1)由學生分組討論分式的定義,對于“兩個整式相除叫做分式”等錯誤,由學生舉反例一一加以糾正,得到結論:

  用、表示兩個整式,就可以表示成的形式.如果中含有字母,式子就叫做分式.其中叫做分式的分子,叫做分式的分母.

  (2)由學生舉幾個分式的例子.

  (3)學生小結分式的概念中應注意的問題.

  ①分母中含有字母.

  ②如同分數一樣,分式的分母不能為零.

  (4)問:何時分式的值為零?[以(2)中學生舉出的分式為例進行討論]

  2.有理式的分類

  請學生類比有理數的分類為有理式分類:

  例1 當取何值時,下列分式有意義?

  (1);

  解:由分母得.

  ∴當時,原分式有意義.

  (2);

  解:由分母得.

  ∴當時,原分式有意義.

  (3);

  解:∵恒成立,

  ∴取一切實數時,原分式都有意義.

  (4).

  解:由分母得.

  ∴當且時,原分式有意義.

  思考:若把題目要求改為:“當取何值時下列分式無意義?”該怎樣做?

  例2 當取何值時,下列分式的值為零?

  (1);

  解:由分子得.

  而當時,分母.

  ∴當時,原分式值為零.

  小結:若使分式的值為零,需滿足兩個條件:①分子值等于零;②分母值不等于零.

  (2);

  解:由分子得.

  而當時,分母,分式無意義.

  當時,分母.

  ∴當時,原分式值為零.

  (3);

  解:由分子得.

  而當時,分母.

  當時,分母.

  ∴當或時,原分式值都為零.

  (4).

  解:由分子得.

  而當時,,分式無意義.

  ∴沒有使原分式的值為零的的值,即原分式值不可能為零.

  (四)總結、擴展

  1.分式與分數的區別.

  2.分式何時有意義?

  3.分式何時值為零?

  (五)隨堂練習

  1.填空題:

  (1)當時,分式的值為零

  (2)當時,分式的值為零

  (3)當時,分式的值為零

  2.教材P55中1、2、3.

  八、布置作業

  教材P56中A組3、4;B組(1)、(2)、(3).

  九、板書設計

  課題 例1

  1.定義例2

  2.有理式分類

八年級數學教案6

  教學目標:

  (1)理解通分的意義,理解最簡公分母的意義;

  (2)掌握分式的通分法則,能熟練掌握通分運算。

  教學重點:分式通分的理解和掌握。

  教學難點:分式通分中最簡公分母的確定。

  教學工具:投影儀

  教學方法:啟發式、討論式

  教學過程:

  (一)引入

  (1)如何計算:

  由此讓學生復習分數通分的意義、通分的根據、通分的法則以及最簡公分母的概念。

  (2)如何計算:

  (3)何計算:

  引導學生思考,猜想如何求解?

  (二)新課

  1、類比分數的通分得到分式的通分:

  把幾個異分母的分式分別化成與原來的分式相等的同分母的分式,叫做分式的通分.

  注意:通分保證

  (1)各分式與原分式相等;

  (2)各分式分母相等。

  2.通分的依據:分式的基本性質.

  3.通分的關鍵:確定幾個分式的最簡公分母.

  通常取各分母的所有因式的最高次冪的積作最簡公分母,這樣的公分母叫做最簡公分母.

  根據分式通分和最簡公分母的定義,將分式通分:

  最簡公分母為:

  然后根據分式的基本性質,分別對原來的各分式的'分子和分母乘一個適當的整式,使各分式的分母都化為通分如下:xxx

  通過本例使學生對于分式的通分大致過程和思路有所了解。讓學生歸納通分的思路過程。

  例1 通分:xxx

  分析:讓學生找分式的公分母,可設問“分母的系數各不相同如何解決?”,依據分數的通分找最小公倍數。

  解:∵ 最簡公分母是12xy2,

  小結:各分母的系數都是整數時,通常取它們的系數的最小公倍數作為最簡公分母的系數.

  解:∵最簡公分母是10a2b2c2,

  由學生歸納最簡公分母的思路。

  分式通分中求最簡公分母概括為:(1)取各分母系數的最小公倍數;(2)凡出現的字母為底的冪的因式都要取;(3)相同字母的冪的因式取指數最大的。取這些因式的積就是最簡公分母。

八年級數學教案7

  教學目標:

  1、知識目標:

  (1)掌握已知三邊畫三角形的方法;

  (2)掌握邊邊邊公理,能用邊邊邊公理證明兩個三角形全等;

  (3)會添加較明顯的輔助線.

  2、能力目標:

  (1)通過尺規作圖使學生得到技能的訓練;

  (2)通過公理的初步應用,初步培養學生的邏輯推理能力.

  3、情感目標:

  (1)在公理的形成過程中滲透:實驗、觀察、歸納;

  (2)通過變式訓練,培養學生“舉一反三”的學習習慣.

  教學重點:SSS公理、靈活地應用學過的各種判定方法判定三角形全等。

  教學難點:如何根據題目條件和求證的結論,靈活地選擇四種判定方法中最適當的方法判定兩個三角形全等。

  教學用具:直尺,微機

  教學方法:自學輔導

  教學過程:

  1、新課引入

  投影顯示

  問題:有一塊三角形玻璃窗戶破碎了,要去配一塊新的,你最少要對窗框測量哪幾個數據?如果你手頭沒有測量角度的儀器,只有尺子,你能保證新配的玻璃恰好不大不小嗎?

  這個問題讓學生議論后回答,他們的答案或許只是一種感覺。于是教師要引導學生,抓住問題的本質:三角形的三個元素――三條邊。

  2、公理的獲得

  問:通過上面問題的分析,滿足什么條件的兩個三角形全等?

  讓學生粗略地概括出邊邊邊的公理。然后和學生一起畫圖做實驗,根據三角形全等定義對公理進行驗證。(這里用尺規畫圖法)

  公理:有三邊對應相等的兩個三角形全等。

  應用格式: (略)

  強調說明:

  (1)、格式要求:先指出在哪兩個三角形中證全等;再按公理順序列出三個條件,并用括號把它們括在一起;寫出結論。

  (2)、在應用時,怎樣尋找已知條件:已知條件包含兩部分,一是已知中給出的,二時圖形中隱含的(如公共邊)

  (3)、此公理與前面學過的公理區別與聯系

  (4)、三角形的穩定性:演示三角形的穩定性與四邊形的不穩定性。在演示中,其實可以去掉組成三角形的一根小木條,以顯示三角形條件不可減少,這也為下面總結“三角形全等需要有3全獨立的條件”做好了準備,進行了溝通。

  (5)說明AAA與SSA不能判定三角形全等。

  3、公理的應用

  (1) 講解例1。學生分析完成,教師注重完成后的點評。

  例1 如圖△ABC是一個鋼架,AB=ACAD是連接點A與BC中點D的支架

  求證:AD⊥BC

  分析:(設問程序)

  (1)要證AD⊥BC只要證什么?

  (2)要證∠1= 只要證什么?

  (3)要證∠1=∠2只要證什么?

  (4)△ABD和△ACD全等的`條件具備嗎?依據是什么?

  證明:(略)

  (2)講解例2(投影例2 )

  例2已知:如圖AB=DC,AD=BC

  求證:∠A=∠C

  (1)學生思考、分析、討論,教師巡視,適當參與討論。

  (2)找學生代表口述證明思路。

  思路1:連接BD(如圖)

  證△ABD≌△CDB(SSS)先得∠A=∠C

  思路2:連接AC證△ABC≌CDA(SSS)先得∠1=∠2,∠3=∠4再由∠1+∠4=∠2+∠3得∠BAD=∠BCD

  (3)教師共同討論后,說明思路1較優,讓學生用思路1在練習本上寫出證明,一名學生板書,教師強調解題格式:在“證明”二字的后面,先將所作的輔助線寫出,再證明。

  例3如圖,已知AB=AC,DB=DC

  (1)若E、F、G、H分別是各邊的中點,求證:EH=FG

  (2)若AD、BC連接交于點P,問AD、BC有何關系?證明你的結論。

  學生思考、分析,適當點撥,找學生代表口述證明思路

  讓學生在練習本上寫出證明,然后選擇投影顯示。

  證明:(略)

  說明:證直線垂直可證兩直線夾角等于 ,而由兩鄰補角相等證兩直線的夾角等于 ,又是很重要的一種方法。

  例4 如圖,已知:△ABC中,BC=2AB,AD、AE分別是△ABC、△ABD的中線,

  求證:AC=2AE.

  證明:(略)

  學生口述證明思路,教師強調說明:“中線”條件下的常規作輔助線法。

  5、課堂小結:

  (1)判定三角形全等的方法:3個公理1個推論(SAS、ASA、AAS、SSS)

  在這些方法中,每一個都需要3個條件,3個條件中都至少包含條邊。

  (2)三種方法的綜合運用

  讓學生自由表述,其它學生補充,自己將知識系統化,以自己的方式進行建構。

  6、布置作業:

  a、書面作業P70#11、12

  b、上交作業P70#14 P71B組3

八年級數學教案8

  教學目標:

  1.了解算術平方根的概念,會用根號表示正數的算術平方根,并了解算術平方根的非負性。

  2.了解開方與乘方互為逆運算,會用平方運算求某些非負數的算術平方根。

  教學重點:

  算術平方根的概念。

  教學難點:

  根據算術平方根的概念正確求出非負數的算術平方根。

  教學過程

  一、情境導入

  請同學們欣賞本節導圖,并回答問題,學校要舉行金秋美術作品比賽,小歐很高興,他想裁出一塊面積為25 的正方形畫布,畫上自己的得意之作參加比賽,這塊正方形畫布的邊長應取多少 ?如果這塊畫布的面積是 ?這個問題實際上是已知一個正數的平方,求這個正數的問題?

  這就要用到平方根的概念,也就是本章的主要學習內容.這節課我們先學習有關算術平方根的概念.

  二、導入新課:

  1、提出問題:(書P68頁的問題)

  你是怎樣算出畫框的邊長等于5dm的呢?(學生思考并交流解法)

  這個問題相當于在等式擴=25中求出正數x的值.

  一般地,如果一個正數x的'平方等于a,即 =a,那么這個正數x叫做a的算術平方根.a的算術平方根記為 ,讀作根號a,a叫做被開方數.規定:0的算術平方根是0.

  也就是,在等式 =a (x0)中,規定x = .

  2、 試一試:你能根據等式: =144說出144的算術平方根是多少嗎?并用等式表示出來.

  3、 想一想:下列式子表示什么意思?你能求出它們的值嗎?

  建議:求值時,要按照算術平方根的意義,寫出應該滿足的關系式,然后按照算術平方根的記法寫出對應的值.例如 表示25的算術平方根。

  4、例1 求下列各數的算術平方根:

  (1)100;(2)1;(3) ;(4)0.0001

  三、練習

  P69練習 1、2

  四、探究:(課本第69頁)

  怎樣用兩個面積為1的小正方形拼成一個面積為2的大正方形?

  方法1:課本中的方法,略;

  方法2:

  可還有其他方法,鼓勵學生探究。

  問題:這個大正方形的邊長應該是多少呢?

  大正方形的邊長是 ,表示2的算術平方根,它到底是個多大的數?你能求出它的值嗎?

  建議學生觀察圖形感受 的大小.小正方形的對角線的長是多少呢?(用刻度尺測量它與大正方形的邊長的大小)它的近似值我們將在下節課探究.

  五、小結:

  1、這節課學習了什么呢?

  2、算術平方根的具體意義是怎么樣的?

  3、怎樣求一個正數的算術平方根

  六、課外作業:

  P75習題13.1活動第1、2、3題

八年級數學教案9

  總課時:7課時 使用人:

  備課時間:第八周 上課時間:第十周

  第4課時:5、2平面直角坐標系(2)

  教學目標

  知識與技能

  1.在給定的直角坐標系下,會根據坐標描出點的位置;

  2.通過找點、連線、觀察,確定圖形的大致形狀的問題,能進一步掌握平面直角坐標系的基本內容。

  過程與方法

  1.經歷畫坐標 系、描點、連線、看圖以及由點找坐標等過程,發展學生的數形結合思想,培養學生的合作 交流能力;

  2.通過由點確定坐標到根據坐標描點的轉化過程,進一步培養學生的轉化意識。

  情感態度與價值觀

  通過生動有趣的教學活動,發展學生的合情推理能力和豐富的情感、態度,提高學生學習數學的興趣。

  教學重點:在已知的直角坐標系下找點、連線、觀察,確定圖形的大致形狀。

  教學難點:在已知的直角坐標系下找點、連線、觀察,確定圖形的大致形狀。

  教學過程

  第一環節 感 受生活中的情境,導入新課(10分鐘,學生自己繪圖找點)

  在上節課中我們學習了平面直角坐標系的定義,以及橫軸、縱軸、點 的坐標的定義,練習了在平面直角坐標系中由點找坐標,還探討了橫坐標或縱坐標相同的點的.連線與坐標軸的關系,坐標軸上點的坐標有什么特點。

  練習:指出下列 各點以及所在象限或坐標軸:

  A(-1,-2.5),B(3,-4),C( ,5),D(3,6),E (-2.3,0),F(0, ), G(0,0) (抽取學生作答)

  由點找坐標是已知點在直角坐標 系中的位置,根據這點在方格紙上對應的x軸、y軸上的數字寫出它的坐標,反過來,已知坐標,讓 你在直角坐標系中找點,你能找到嗎?這就是本節課的內容。

  第二環節 分類討論,探索新知.(15分鐘,小組討論,全班交流)

  1.請同學們拿出準備好的方格紙,自己建立平面直角坐標系,然后按照我給出的坐標,在直角坐標系中描點,并依次用線段連接起來。

  (-9,3),(-9,0),(-3,0),( -3,3)

  ( 學生操作完畢后)

  2.(出示投影)還是在這個平面直角坐標系中,描出下列各組內的點用線段依次連接起來。

  (1)(-6,5),(-10,3),(-9,3),(-3,3),(-2,3),(-6,5);

  (2)(3.5,9),(2,7),(3,7),(4,7) ,(5,7),(3.5,9);

  (3)(3,7),(1,5),(2,5),(5,5),(6,5),(4,7);

  (4)(2,5),( 0,3),(3,3),(3,0),(4,0),(4,3),(7,3),(5,5)。

  觀察所得的圖形,你覺得它像什么?

  分成4人小組,大家合作在剛才建立的平面直角坐標系中(選出小組中最好的)添畫。各人分工,每人畫一小題。看哪個小組做得最快?

  (出示學生的作品)畫出是 這樣的嗎?這幅圖畫很美,你們覺得它像什么?

  這個圖形像一棟房子旁邊還有一棵大樹。

  3.做一做

  (出示投影)

  在書上已建立的直角坐標系畫,要求每位同學獨立完成。

  (學生描點、畫圖)

  (拿出一位做對的學生的作品投影)

  你們觀察所得的圖形和它是否一樣?若一樣,你能判斷出它像什么呢?

  (像貓臉)

  第三環節 學有所用.(10分鐘,先獨立完成,后小組討論)

  (補充)1.在直角坐標系中描出下列各點,并將各組內的點用線段順次連接起來。

  (1)(0,3),(-4,0),(0,-3),(4,0),(0,3);

  (2)(0,0),(4,-3),(8,0),(4,3),(0,0);

  (3)(2,0)

  觀察所得的圖形,你覺得它像什么?(像移動的菱形)

  2.在直角坐標系中,設法找到若干個點使得連接各點所得的封閉圖形是如下圖所示的十字。

  先獨立完成,然后小組討論是否正確。

  第四環節 感悟與收獲(5分鐘,學生總結,全班交流)

  本節課在復習上節課的基礎上,通過找點、連 線、觀察,確定圖形的大致形狀,進一步掌握平面直角坐標系的基本內容。

  在例題和練習中,我們畫出了不少美麗的圖形,自己設計一些圖形,并把圖形放在直角坐標系下,寫出點的坐標。

  第五環節 布置作業

  習題5、4

  A組(優等生)1、2、3

  B組(中等生)1、2

  C組(后三分之一生)1、2

八年級數學教案10

  一、內容和內容解析

  1.內容

  三角形中相關元素的概念、按邊分類及三角形的三邊關系.

  2.內容解析

  三角形是一種最基本的幾何圖形,是認識其他圖形的基礎,在本章中,學好了三角形的有關概念和性質,為進一步學習多邊形的相關內容打好基礎,本節主要介紹與三角形的的概念、按邊分類和三角形三邊關系,使學生對三角形的有關知識有更為深刻的理解.

  本節課的教學重點:三角形中的相關概念和三角形三邊關系.

  本節課的教學難點:三角形的三邊關系.

  二、目標和目標解析

  1.教學目標

  (1)了解三角形中的相關概念,學會用符號語言表示三角形中的對應元素.

  (2)理解并且靈活應用三角形三邊關系.

  2.教學目標解析

  (1)結合具體圖形,識三角形的概念及其基本元素.

  (2)會用符號、字母表示三角形中的相關元素,并會按邊對三角形進行分類.

  (3)理解三角形兩邊之和大于第三邊這一性質,并會運用這一性質來解決問題.

  三、教學問題診斷分析

  在探索三角形三邊關系的過程中,讓學生經歷觀察、探究、推理、交流等活動過程,培養學生的和推理能力和合作學習的精神.

  四、教學過程設計

  1.創設情境,提出問題

  問題回憶生活中的三角形實例,結合你以前對三角形的了解,請你給三角形下一個定義.

  師生活動:先讓學生分組討論,然后各小組派代表發言,針對學生下的定義,給出各種圖形反例,如下圖,指出其不完整性,加深學生對三角形概念的理解.

  【設計意圖】三角形概念的獲得,要讓學生經歷其描述的'過程,借此培養學生的語言表述能力,加深學生對三角形概念的理解.

  2.抽象概括,形成概念

  動態演示“首尾順次相接”這個的動畫,歸納出三角形的定義.

  師生活動:

  三角形的定義:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形.

  【設計意圖】讓學生體會由抽象到具體的過程,培養學生的語言表述能力.

  補充說明:要求學生學會三角形、三角形的頂點、邊、角的概念以及幾何表達方法.

  師生活動:結合具體圖形,教師引導學生分析,讓學生學會由文字語言向幾何語言的過渡.

  【設計意圖】進一步加深學生對三角形中相關元素的認知,并進一步熟悉幾何語言在學習中的應用.

  3.概念辨析,應用鞏固

  如圖,不重復,且不遺漏地識別所有三角形,并用符號語言表示出來.

  1.以AB為一邊的三角形有哪些?

  2.以∠D為一個內角的三角形有哪些?

  3.以E為一個頂點的三角形有哪些?

  4.說出ΔBCD的三個角.

  師生活動:引導學生從概念出發進行思考,加深學生對三角形中相關元素概念的理解.

  4.拓廣延伸,探究分類

  我們知道,按照三個內角的大小,可以將三角形分為銳角三角形、直角三角形和鈍角三角形,如果要按照邊的大小關系對三角形進行分類,又應該如何分呢?小組之間同學進行交流并說說你們的想法.

  師生活動:通過討論,學生類比按角的分類方法按邊對三角形進行分類,接著引出等腰三角形及等邊三角形的概念,引導學生了解等腰三角形與等邊三角形的聯系,強化學生對三角形按邊分類的理解.

八年級數學教案11

  《正方形》教學設計

  教學內容分析:

  ⑴學習特殊的平行四邊形—正方形,它的特殊的性質和判定。

  ⑵前面學習了平行四邊形、矩形菱形,類比他們的性質與判斷,有利于對正方形的研究。

  ⑶對本節的學習,繼續培養學生分類研究的思想,并且建立新舊知識的聯系,類比的基礎上進行歸納,梳理知識,進一步發展學生的推理能力。

  學生分析

  ⑴學生在小學初步認識了正方形,并且本節課之前,學生又學習了幾種平行四邊形,已經具備了觀察研究平行四邊形的經驗與知識基礎。

  ⑵學生在上幾節已有了推理的經歷,但是對于證明,學生的思維能力還不成熟,有待于提高。

  教學目標:

  ⑴知識與技能:了解正方形是特殊的平行四邊形,掌握它的性質和判定,會利用性質與判定進行簡單的說理。

  ⑵過程與方法:通過類比前邊的四邊形的研究,探索并歸納正方形的性質與判定。通過運用提高學生的推理能力。

  ⑶情感態度與價值觀:在學習中體會正方形的完美性,通過活動獲得成功的喜悅與自信。

  重點:掌握正方形的性質與判定,并進行簡單的推理。

  難點:探索正方形的判定,發展學生的推理能

  教學方法:類比與探究

  教具準備:可以活動的四邊形模型。

  一、教學分析

  (一)教學內容分析

  1.教材:義務教育課程標準實驗教科書《數學》九年級上冊(人民教育出版社)

  2.本課教學內容的地位、作用,知識的前后聯系

  《中心對稱圖形》是新人教版九年級數學上冊第二十三章第二單元第二節課的內容。本節教材屬于圖形變換的內容,是在學習了“軸對稱和軸對稱圖形”、“旋轉和中心對稱”后的一種對稱圖形,因此涉及歸納、類比等思想方法,對激發學生探索精神和創新意識等方面都有重要意義。

  3.本課教學內容的特點,重點分析體現新課程理念的特點

  本節課主要介紹中心對稱圖形的概念、中心對稱圖形的識別、中心對稱圖形與軸對稱圖形與中心對稱的比較、中心對稱圖形的性質。為使學生感受、理解知識的產生和發展過程,培養學生的抽象思維,我將通過:(1)例舉日常生活中的一些旋轉對稱圖形引出中心對稱圖形的概念;(2)引導學生觀察、猜想、實驗、歸納、類比等方法探究中心對稱圖形的性質,(3)通過多媒體演示使學生對中心對稱圖形的性質有直觀的表象。我認為這環環相扣、層層深入、循序漸進的活動過程,符合新課程標準理念和學生建構知識的規律,有利于激發學生的學習情趣。

  (二)教學對象分析

  1.學生所在地區、學校及班級的特色

  我授課的班級是西安市閻良區振興中學九年級一班,作為九年級的學生,在圖形的對稱方面已經積累一些經驗,已經具有一定的觀察、猜想、實驗、歸納、類比等研究圖形對稱變換的能力;班級學生具有個性活潑,思維活躍,對各種事物充滿好奇,學習情緒易于調動,學習積極性高的特點,但學生的抽象思維能力個體差異較大,并且班級中已出現分化現象。

  2.學生的年齡特點和認知特點

  班級學生的年齡大多在15歲到17歲間。他們已具備了一定的獨立分析、解決問題的能力,表現欲望較為強烈,喜好發表個人見解并且具有一定的合作交流、共同探討的意識與經驗,因此在課程內容的安排中,適當地創設一些具有一定思維深度的問題,加強學生在學習過程中自主探索與合作交流的緊密結合,促使學生在探究的過程中,更多地獲得成功的體驗,感受學習思考的樂趣。

  教學過程

  一:復習鞏固,建立聯系

  【教師活動

  問題設置:①平行四邊形、矩形,菱形各有哪些性質?

  ②()的四邊形是平行四邊形。()的平行四邊形是矩形。()的平行四邊形是菱形。()的四邊形是矩形。()的四邊形是菱形。

  【學生活動

  學生回憶,并舉手回答,對于填空題,讓更多的學生參與,說出更多的答案。

  【教師活動

  評析學生的結果,給予表揚。

  總結性質從邊角對角線考慮,在填空時也考慮這幾方面之外,還應該考慮三者之間的聯系與區別。

  演示平行四邊形變為矩形菱形的過程。

  二:動手操作,探索發現

  活動一:拿出一張矩形紙片,拉起一角,使其寬AB落在長AD邊上,如下圖所示,沿著B′E剪下,能得到什么圖形?

  【學生活動

  學生拿出自備矩形紙片,動手操作,不難發現它是正方形。

  設置問題:①什么是正方形?

  觀察發現,從活動中體會。

  【教師活動】:演示矩形變為正方形的過程,菱形變為正方形的過程。

  【學生活動】認真觀察變化過程,思考之間的聯系,舉手回答設置問題。

  設置問題②正方形是矩形嗎,是菱形嗎?是平行四邊形嗎?為什么?

  【學生活動】

  小組討論,分組回答。

  【教師活動】

  總結板書:㈠(一組鄰邊相等)的矩形是正方形,(一個角是直角)的`菱形是正方形。

  設置問題③正方形有那些性質?

  【學生活動】

  小組討論,舉手搶答。

  【教師活動

  表揚學生發言,板書學生發現,㈡正方形每一條對角線平分一組對角

  活動二:拿出活動一得到的正方形折一折,正方形是軸對稱圖形嗎?有幾條對稱軸?

  學生活動

  折紙發現,說出自己的發現。得到正方形的又一性質。正方形是軸對稱圖形。

  教師活動

  演示從平行四邊形變為正方形的過程,擦去板書㈠中的括號內容,出示一下問題:你還可以怎樣填空?

  ()的菱形是正方形,()的矩形是正方形,()的平行四邊形是正方形,()的四邊形是正方形。

  學生活動

  小組充分交流,表達不同的意見。

  教師活動

  評析活動,總結發現:

  一組鄰邊相等的矩形是正方形,對角線互相平分的矩形是正方形;

  有一個角是直角的菱形是正方形,對角線相等的菱形是正方形,;

  有一組鄰邊相等且有一個角是直角的平行四邊形是正方形,對角線相等且互相平分的平行四邊形是正方形;

  四邊相等且有一角是直角的四邊形是正方形,對角線相等且互相垂直平分的四邊形是正方形。

  以上是正方形的判定方法。

  正方形是一個多么完美的平行四邊形呀?大家互相說一說,它的完美體現在哪里?生活中有哪些利用正方形的例子?

  學生交流,感受正方形

  三,應用體驗,推理證明。

  出示例一:正方形ABCD的兩條對角線AC,BD交與O,AB長4cm,求AC,AO長,及的度數。

  方法一解:∵四邊形ABCD是正方形

  ∴∠ABC=90°(正方形的四個角是直角)

  BC=AB=4cm(正方形的四條邊相等)

  ∴=45°(等腰直角三角形的底角是45°)

  ∴利用勾股定理可知,AC===4cm

  ∵AO=AC(正方形的對角線互相平分)

  ∴AO=×4=2cm

  方法二:證明△AOB是等腰直角三角形,即可得證。

  學生活動

  獨立思考,寫出推理過程,再進行小組討論,并且各小組指派代表寫在黑板上,共同交流。

  教師活動

  總結解題方法,從正方形的性質全面考慮,準確利用條件,減少麻煩。評析解題步驟,表揚突出學生。

  出示例二:在正方形ABCD中,E、F、G、H分別在它的四條邊上,且AE=BF=CG=DH,四邊形EFGH是什么特殊的四邊形,你是如何判斷的?

  學生活動

  小組交流,分析題意,整理思路,指名口答。

  教師活動

  說明思路,從已知出發或者從已有的判定加以選擇。

  四,歸納新知,梳理知識。

  這一節課你有什么收獲?

  學生舉手談論自己的收獲。

  請把平行四邊形,矩形,菱形,正方形分別填寫在下圖的ABCDC處,說明它們的關系。

  發表評論

  教學目標:

  情意目標:培養學生團結協作的精神,體驗探究成功的樂趣。

  能力目標:能利用等腰梯形的性質解簡單的幾何計算、證明題;培養學生探究問題、自主學習的能力。

  認知目標:了解梯形的概念及其分類;掌握等腰梯形的性質。

  教學重點、難點

  重點:等腰梯形性質的探索;

  難點:梯形中輔助線的添加。

  教學課件:PowerPoint演示文稿

  教學方法:啟發法、

  學習方法:討論法、合作法、練習法

  教學過程:

  (一)導入

  1、出示圖片,說出每輛汽車車窗形狀(投影)

  2、板書課題:5梯形

  3、練習:下列圖形中哪些圖形是梯形?(投影)

  結梯形概念:只有4、總結梯形概念:一組對邊平行另以組對邊不平行的四邊形是梯形。

  5、指出圖形中各部位的名稱:上底、下底、腰、高、對角線。(投影)

  6、特殊梯形的分類:(投影)

  (二)等腰梯形性質的探究

  【探究性質一】

  思考:在等腰梯形中,如果將一腰AB沿AD的方向平移到DE的位置,那么所得的△DEC是怎樣的三角形?(投影)

  猜想:由此你能得到等腰梯形的內角有什么樣的性質?(學生操作、討論、作答)

  如圖,等腰梯形ABCD中,AD∥BC,AB=CD。求證:∠B=∠C

  想一想:等腰梯形ABCD中,∠A與∠D是否相等?為什么?

  等腰梯形性質:等腰梯形的同一條底邊上的兩個內角相等。

  【操練】

  (1)如圖,等腰梯形ABCD中,AD∥BC,AB=CD,∠B=60o,BC=10cm,AD=4cm,則腰AB=cm。(投影)

  (2)如圖,在等腰梯形ABCD中,AD∥BC,AB=CD,DE∥AC,交BC的延長線于點E,CA平分∠BCD,求證:∠B=2∠E.(投影)

  【探究性質二】

  如果連接等腰梯形的兩條對角線,圖中有哪幾對全等三角形?哪些線段相等?(學生操作、討論、作答)

  如上圖,等腰梯形ABCD中,AD∥BC,AB=CD,AC、BD相交于O,求證:AC=BD。(投影)

  等腰梯形性質:等腰梯形的兩條對角線相等。

  【探究性質三】

  問題一:延長等腰梯形的兩腰,哪些三角形是軸對稱圖形?為什么?對稱軸呢?(學生操作、作答)

  問題二:等腰梯是否軸對稱圖形?為什么?對稱軸是什么?(重點討論)

  等腰梯形性質:同以底上的兩個內角相等,對角線相等

  (三)質疑反思、小結

  讓學生回顧本課教學內容,并提出尚存問題;

  學生小結,教師視具體情況給予提示:性質(從邊、角、對角線、對稱性等角度總結)、解題方法(化梯形問題為三角形及平行四邊形問題)、梯形中輔助線的添加方法。

八年級數學教案12

  一、教材分析

  1、特點與地位:重點中的重點。

  本課是教材求兩結點之間的最短路徑問題是圖最常見的應用的之一,在交通運輸、通訊網絡等方面具有一定的實用意義。

  2、重點與難點:結合學生現有抽象思維能力水平,已掌握基本概念等學情,以及求解最短路徑問題的自身特點,確立本課的重點和難點如下:

  (1)重點:如何將現實問題抽象成求解最短路徑問題,以及該問題的解決方案。

  (2)難點:求解最短路徑算法的程序實現。

  3、教學安排:最短路徑問題包含兩種情況:一種是求從某個源點到其他各結點的最短路徑,另一種是求每一對結點之間的最短路徑。根據教學大綱安排,重點講解第一種情況問題的解決。安排一個課時講授。教材直接分析算法,考慮實際應用需要,補充旅游景點線路選擇的實例,實例中問題解決與算法分析相結合,逐步推動教學過程。

  二、教學目標分析

  1、知識目標:掌握最短路徑概念、能夠求解最短路徑。

  2、能力目標:

  (1)通過將旅游景點線路選擇問題抽象成求最短路徑問題,培養學生的數據抽象能力。

  (2)通過旅游景點線路選擇問題的解決,培養學生的獨立思考、分析問題、解決問題的能力。

  3、素質目標:培養學生講究工作方法、與他人合作,提高效率。

  三、教法分析

  課前充分準備,研讀教材,查閱相關資料,制作多媒體課件。教學過程中除了使用傳統的“講授法”以外,主要采用“案例教學法”,同時輔以多媒體課件,以啟發的方式展開教學。由于本節課的內容屬于圖這一章的難點,考慮學生的接受能力,注意與學生溝通,根據學生的反應控制好教學進度是本節課成功的關鍵。

  四、學法指導

  1、課前上次課結課時給學生布置任務,使其有針對性的預習。

  2、課中指導學生討論任務解決方法,引導學生分析本節課知識點。

  3、課后給學生布置同類型任務,加強練習。

  五、教學過程分析

  (一)課前復習(3~5分鐘)回顧“路徑”的概念,為引出“最短路徑”做鋪墊。

  教學方法及注意事項:

  (1)采用提問方式,注意及時小結,提問的目的.是幫助學生回憶概念。

  (2)提示學生“溫故而知新”,養成良好的學習習慣。

  (二)導入新課(3~5分鐘)以城市公路網為例,基于求兩個點間最短距離的實際需要,引出本課教學內容“求最短路徑問題”。教學方法及注意事項:

  (1)先講實例,再指出概念,既可以吸引學生注意力,激發學習興趣,又可以實現教學內容的自然過渡。

  (2)此處使用案例教學法,不在于問題的求解過程,只是為了說明問題的存在,所以這里的例子只需要概述,能夠說明問題即可。

  (三)講授新課(25~30分鐘)

  1、求某一結點到其他各結點的最短路徑(重點)主要采用案例教學法,提出旅游景點選擇的例子,解決如何選擇代價小、景點多的路線。

  (1)將實際問題抽象成圖中求任一結點到其他結點最短路徑問題。(3~5分鐘)教學方法及注意事項:

  ①主要采用講授法,將實際問題用圖形表示出來。語言描述轉換的方法(用圓圈加標號表示某一景點,用箭頭表示從某景點到其他景點是否存在旅游線路,并且將旅途費用寫在箭頭的旁邊。)一邊用語言描述,一邊在黑上畫圖。

  ②注意示范畫圖只進行一部分,讓學生獨立思考、自主完成余下部分的轉化。

  ③及時總結,原型抽象(景點作為圖的結點,景點間的線路作為圖的邊,旅途費用作為邊的權值),將案例求解問題抽象成求圖中某一結點到其他各結點的最短路徑問題。

  ④利用多媒體課件,向學生展示一張帶權有向圖,并略作解釋,為后續教學做準備。

  教學方法及注意事項:

  ①啟發式教學,如何實現按路徑長度遞增產生最短路徑?

  ②結合案例分析求解最短路徑過程中(重點)注意此處借助黑板,按照算法思想的步驟。同樣,也是只示范一部分,余下部分由學生獨立思考完成。

  (四)課堂小結(3~5分鐘)

  1、明確本節課重點

  2、提示學生,這種方式形成的圖又可以解決哪類實際問題呢?

  (五)布置作業

  1、書面作業:復習本次課內容,準備一道備用習題,靈活把握時間安排。

  六、教學特色

  以旅游路線選擇為主線,靈活采用案例教學、示范教學、多媒體課件等多種手段輔助教學,使枯燥的理論講解生動起來。在順利開展教學的同時,體現所講內容的實用性,提高學生的學習興趣。

八年級數學教案13

  教學目標:

  1、掌握平均數、中位數、眾數的概念,會求一組數據的平均數、中位數、眾數。

  2、在加權平均數中,知道權的差異對平均數的影響,并能用加權平均數解釋現實生活中一些簡單的現象。

  3、了解平均數、中位數、眾數的差別,初步體會它們在不同情境中的應用。

  4、能利和計算器求一組數據的算術平均數。

  教學重點:

  體會平均數、中位數、眾數在具體情境中的意義和應用。

  教學難點:

  對于平均數、中位數、眾數在不同情境中的應用。

  教學方法:

  歸納教學法。

  教學過程:

  一、知識回顧與思考

  1、平均數、中位數、眾數的概念及舉例。

  一般地對于n個數X1……Xn把(X1+X2+…Xn)叫做這n個數的算術平均數,簡稱平均數。

  如某公司要招工,測試內容為數學、語文、外語三門文化課的.綜合成績,滿分都為100分,且這三門課分別按25%、25%、50%的比例計入總成績,這樣計算出的成績為數學,語文、外語成績的加權平均數,25%、25%、50%分別是數學、語文、外語三項測試成績的權。

  中位數就是把一組數據按大小順序排列,處在最中間位置的數(或最中間兩個數據的平均數)叫這組數據的中位數。

  眾數就是一組數據中出現次數最多的那個數據。

  如3,2,3,5,3,4中3是眾數。

  2、平均數、中位數和眾數的特征:

  (1)平均數、中位數、眾數都是表示一組數據“平均水平”的平均數。

  (2)平均數能充分利用數據提供的信息,在生活中較為常用,但它容易受極端數字的影響,且計算較繁。

  (3)中位數的優點是計算簡單,受極端數字影響較小,但不能充分利用所有數字的信息。

  (4)眾數的可靠性較差,它不受極端數據的影響,求法簡便,當一組數據中個別數據變動較大時,適宜選擇眾數來表示這組數據的“集中趨勢”。

  3、算術平均數和加權平均數有什么區別和聯系:

  算術平均數是加權平均數的一種特殊情況,加權平均數包含算術平均數,當加權平均數中的權相等時,就是算術平均數。

  4、利用計算器求一組數據的平均數。

  利用科學計算器求平均數的方法計算平均數。

  二、例題講解:

  某校規定:學生的平時作業、期中練習、期末考試三項成績分別按40%、20%、40%的比例計入學期總評成績,小亮的平時作業、期中練習、期末考試的數學成績依次為90分,92分,85分,小亮這學期的數學總評成績是多少?

  三、課堂練習:

  復習題A組

  四、小結:

  1、掌握平均數、中位數與眾數的概念及計算。

  2、理解算術平均數與加權平均數的聯系與區別。

  五、作業:

  復習題B組、C組(選做)

八年級數學教案14

  一元二次方程根與系數的關系的知識內容主要是以前一單元中的求根公式為基礎的。教材通過一元二次方程ax2+bx+c=0(a≠0)的根x1、2= 得出一元二次方程根與系數的關系,以及以數x1、x2為根的一元二次方程的求方程模型。然后是通過4個例題介紹了利用根與系數的關系簡化一些計算的知識。例如,求方程中的特定系數,求含有方程根的一些代數式的值等問題,由方程的根確定方程的系數的方法等等。

  根與系數的關系也稱為韋達定理(韋達是法國數學家)。韋達定理是初中代數中的一個重要定理。這是因為通過韋達定理的學習,把一元二次方程的研究推向了高級階段,運用韋達定理可以進一步研究數學中的許多問題,如二次三項式的因式分解,解二元二次方程組;韋達定理對后面函數的學習研究也是作用非凡。

  通過近些年的中考數學試卷的分析可以得出:韋達定理及其應用是各地市中考數學命題的熱點之一。出現的題型有選擇題、填空題和解答題,有的.將其與三角函數、幾何、二次函數等內容綜合起來,形成難度系數較大的壓軸題。

  通過韋達定理的教學,可以培養學生的創新意識、創新精神和綜合分析數學問題的能力,也為學生今后學習方程理論打下基礎。

  (二)重點、難點

  一元二次方程根與系數的關系是重點,讓學生從具體方程的根發現一元二次方程根與系數之間的關系,并用語言表述,以及由一個已知方程求作新方程,使新方程的根與已知的方程的根有某種關系,比較抽象,學生真正掌握有一定的難度,是教學的難點。

  (三)教學目標

  1、知識目標:要求學生在理解的基礎上掌握一元二次方程根與系數的關系式,能運用根與系數的關系由已知一元二次方程的一個根求出另一個根與未知數,會求一元二次方程兩個根的倒數和與平方數,兩根之差。

八年級數學教案15

  ●教學目標

  (一)教學知識點

  1.掌握相似 三角形的定義、表示法,并能根據定義判斷兩個三角形是否相似.

  2.能根據相似比進行計 算.

  (二)能力訓練要求

  1.能根據定義判斷兩個三角形是否相似,訓練 學生的判斷能力.

  2.能根據相似比求長度和角度,培養學生的運用能力.

  (三)情感與價值觀要求

  通過與相似多邊形有關概念的類比,滲透類比的教學思想,并領會特殊與一般的關系.

  ●教學重點 相似三角形的定義及運用.

  ●教學難點 根據定義求線段長或角的度數.

  ●教學過程

  Ⅰ.創設問題情境,引入新課

  今天, 我們就來研究相似三角形.

  Ⅱ.新課講解

  1.相似三角形的定義及記法

  三角對應相等,三邊 對應成比例的兩個三角形叫做相 似三角形。如△ABC與△DEF相似,記作△ABC∽△DEF

  其中對應頂點要寫在對應位置,如A與D,B與E,C與F相對應.AB∶DE等于相似比.

  2.想一想

  如果△ABC∽△DEF,那么哪些角是對應角?哪些邊是對應邊?對應 角 有什么關系?對應邊呢?

  所以 D、E、F. .

  3.議一議,學生討論

  (1)兩個全等三角形一定相似嗎?為什么?

  (2)兩個直角三角 形一 定相似嗎?兩個等腰直角三角形呢?為 什么?

  (3)兩個等腰三角形一定相似嗎?兩個等邊三角形呢?為什么?

  結論:兩 個全等三角形一定相似.

  兩個 等腰直角三角形一定相似.兩個等邊三角形一定相似.兩個直角三角形和兩個等腰三角形不一定相似.

  4.例題

  例1、有一塊呈三角形形狀 的草坪,其中一邊的長是20 m,在這個草坪的圖紙上,這條邊長5 cm,其他兩邊的. 長都是3.5 cm,求該草坪其他兩邊的實際長度.

  例2.已 知△ABC∽△ADE,AE=50 cm,EC=30 cm,BC =70 cm,BAC=45,

  ACB=40,求(1)AED和ADE的度數。(2)DE的長.

  5.想一想

  在例2的條件下,圖中有哪些線段成比例?

  Ⅲ.課堂練習 P129

  Ⅳ.課時小結

  相似三角形的 判定方法定義法.

  Ⅴ.課后作業

【八年級數學教案】相關文章:

八年級數學教案06-14

八年級數學教案范文11-11

八年級上冊數學教案01-13

八年級數學教案優秀01-31

八年級數學教案15篇11-11

八年級數學教案(精選25篇)02-16

八年級數學教案(匯編15篇)01-08

八年級數學教案(通用15篇)01-16

八年級數學教案集錦15篇11-29

主站蜘蛛池模板: 国产高清无套内谢| 久久综合给合久久狠狠97色| 老鲁夜夜老鲁| 真实单亲乱l仑对白视频| 国产精品老熟女露脸视频| 亚洲欧洲专线一区| 精品久久久无码人妻中文字幕豆芽| 中文字幕乱码亚洲∧v日本| 久久久久久久香蕉国产30分钟| 成人片黄网站色大片免费观看app| 免费无码又爽又刺激高潮| 呦系列视频一区二区三区| 日本体内she精高潮| 久久久久欧美精品网站| 国内精品自国内精品自线| 亚洲伊人丝袜精品久久| 欧美群妇大交群| 成全视频高清免费| 婷婷色爱区综合五月激情韩国| 97久久精品人人澡人人爽| 成年女人色毛片| 免费精品国自产拍在线观看| 久久久精品2020免费观看| 末发育娇小性色xxxxx视频| 国产产无码乱码精品久久鸭| 潮喷大喷水系列无码视频| 久久久g0g0午夜无码精品| 精品国产一区二区三区香蕉| 国产欧美日韩一区二区三区在线| 无码成a∧人片在线播放| 亚洲欧洲日产国码无码av一| 亚洲国精产品一二二线| 在线综合亚洲欧洲综合网站| 亚洲精品nv久久久久久久久久| 24小时日本在线www免费的| 国产jjizz女人多水喷水| 亚洲国产精品日本无码网站| 无套中出丰满人妻无码| 熟妇人妻中文字幕无码老熟妇| 久久国产劲暴∨内射| 免费看无码毛视频成片|