高一數學教學計劃15篇
人生天地之間,若白駒過隙,忽然而已,相信大家對即將到來的工作生活滿心期待吧!現在就讓我們好好地規劃一下吧。什么樣的計劃才是好的計劃呢?以下是小編為大家收集的高一數學教學計劃,歡迎閱讀,希望大家能夠喜歡。
高一數學教學計劃1
一、上學期教學回顧
高一共四個教學班,共計160余人。楊文國帶高一(一)班,高一(二)班;張忠杰帶高一(三)班和高一(四)班。其中各班期末八校聯考的成績分別為:50.6分,32.8分,27.2分,34.5分,總平36.9分。學期中途因張忠杰離開學校導致頻繁更換老師,(三)班、(四)班的成績因而受到影響。期末由王山任(三)班、(四)班的數學老師。
上學期工作在學生學習的落實環節上做得不太扎實,這將是本學期重點改進的地方。
二、本學期的措施及打算
1.一周學習早知道。明確目標更能確定努力的方向。為了讓學生學習更有目的.性,有效性和積極性,每周第一節課給出一周的教學進度,學習目標和過關要求。不僅老師要做到對所教內容清楚明了,也要讓學生對所學內容做到每周學習目標清晰化。
2.落實每周測試過關制。周測內容與一周學習目標及一周的講授內容緊密相連。未盡力而又沒有過關的學生將按事先說明的措施給予處罰。以便讓學生重視課堂學習,重視平時作業,重視一周的學習過程。做到讓學生每周學習過程精細化。 3.根據學生學力狀況進行分層次的培優補差。
三、教學進度安排
周次,學習內容
目標要求
1. 必修4 第一章三角函數:第1至3節
周期,角的推廣及表示,弧度制及互化
2. 軍訓
3. 第4節:正弦函數
單位圓,正弦函數定義,象限符號,誘導公式,五點法畫圖像,圖像及性質。
4. 第5節:余弦函數,第6節:正切函數
余弦函數正切函數定義,象限符號,誘導公式,圖像及性質
5. 第7節:xAsiny的圖像,第8節:同角的基本關系。
圖像變換規律,同角三角函數的基本關系及其運用。章節復習,章節過關測試。
6. 第二章:平面向量:第1節至第2節
向量,有向線段,向量的長及相等、平行、共線、單位向量等概念,向量的加減法運算
7. 第3節至第5節
數乘向量,基本定理,向量運算的鞏固訓練,平面向量的坐標表示及運算。數量積的應用。
8. 第5節至第7節
數量積的應用及坐標表示,向量應用舉例。習題課,章節復習,章節過關測試。
9. 第三章:三角恒等變換:第1節至第2節
兩角和差的公式得推導,記憶及靈活運用,二倍角公式得來源及運用。期中復習。
10. 期中考試
期中復習,期中考試。
11. 第三章 第3節:三角函數的簡單應用
試卷講評改錯,簡單應用,三角恒等變換的綜合習題課,練習,章節復習,必修4基本測試。
12. 五一長假
13. 必修3 第一章:統計。第1節至第5節
統計的程序,統計圖,統計方案設計,普查與抽樣,抽樣方法,分層抽樣與系統抽樣,花統計圖表及讀統計圖表,數字特征:平均數,中位數,眾數,級差,方差的意義及計算分析,
14. 第6節至第9節
樣本對總本的估計及相應的數字特征的計算分析,統計實踐活動,變量的相關性及例題分析,最小二乘估計。章節復習,章節過關測試。
15. 第二章:算法初步:第1節至第3節
基本思想,基本結構及設計,排序問題。
16. 第4節:幾種基本語句
條件語句,循環語句,復習三角函數的基本內容,章節復習,三角函數與算法初步過關測試。
17. 第三章:概率:第1節至第2節
頻率,概率,古典概率,概率計算公式。
18. 第2節至第3節
建概率模型,互斥事件,習題課節復習,章節過關測試。
19. 期末復習
20. 期末復習,期末考試
高一數學教學計劃2
教學目標:
知識與技能通過具體實例了解冪函數的圖象和性質,并能進行簡單的應用.
過程與方法能夠類比研究一般函數、指數函數、對數函數的過程與方法,來研究冪函數的圖象和性質.
情感、態度、價值觀體會冪函數的變化規律及蘊含其中的對稱性.
教學重點:
重點從五個具體冪函數中認識冪函數的一些性質.
難點畫五個具體冪函數的圖象并由圖象概括其性質,體會圖象的變化規律.
教學程序與環節設計:
材料一:冪函數定義及其圖象.
一般地,形如 的函數稱為冪函數,其中 為常數.
冪函數的定義來自于實踐,它同指數函數、對數函數一樣,也是基本初等函數,同樣也是一種形式定義的函數,引導學生注意辨析.
下面我們舉例學習這類函數的一些性質.
作出下列函數的圖象:利用所學知識和方法嘗試作出五個具體冪函數的`圖象,觀察所圖象,體會冪函數的變化規律.
定義域
值域
奇偶性
單調性
定點
師:引導學生應用畫函數的性質畫圖象,如:定義域、奇偶性.
師生共同分析,強調畫圖象易犯的錯誤.
材料二:冪函數性質歸納.
(1)所有的冪函數在(0,+)都有定義,并且圖象都過點(1,1);
(2) 時,冪函數的圖象通過原點,并且在區間 上是增函數.特別地,當 時,冪函數的圖象下凸;當 時,冪函數的圖象上凸;
(3) 時,冪函數的圖象在區間 上是減函數.在第一象限內,當 從右邊趨向原點時,圖象在 軸右方無限地逼近 軸正半軸,當 趨于 時,圖象在 軸上方無限地逼近 軸正半軸.
例1、求下列函數的定義域;
例2、比較下列兩個代數值的大小:
[例3]討論函數 的定義域、奇偶性,作出它的圖象,并根據圖象說明函數的單調性.
練習
1.利用冪函數的性質,比較下列各題中兩個冪的值的大小:
2.作出函數 的圖象,根據圖象討論這個函數有哪些性質,并給出證明.
3.作出函數 和函數 的圖象,求這兩個函數的定義域和單調區間.
4.用圖象法解方程:
1.如圖所示,曲線是冪函數 在第一象限內的圖象,已知 分別取 四個值,則相應圖象依次為:.
2.在同一坐標系內,作出下列函數的圖象,你能發現什么規律?
高一數學教學計劃3
教學計劃可以幫助教師理清教學思路,提高課堂效率。
●教學目標
(一)教學知識點
1.了解全集的意義.
2.理解補集的概念.
(二)能力訓練要求
1.通過概念教學,提高學生邏輯思維能力.
2.通過教學,提高學生分析、解決問題能力.
(三)德育滲透目標 滲透相對的觀點.
●教學重點 補集的概念.
●教學難點
補集的有關運算.
●教學方法 發現式教學法 通過引入實例,進而對實例的分析,發現尋找其一般結果,歸納其普遍規律.
●教具準備
第一張:(記作1.2.2 A)
●教學過程 Ⅰ.復習回顧
1.集合的子集、真子集如何尋求?其個數分別是多少? 2.兩個集合相等應滿足的.條件是什么?
Ⅱ.講授新課 [師]事物都是相對的,集合中的部分元素與集合之間關系就是部分與整體的關系.
請同學們由下面的例子回答問題: 投影片:(1.2.2 A)
[生]集合B就是集合S中除去集合A之后余下來的集合. 即為如圖陰影部分
由此借助上圖總結規律如下: 投影片:(1.2.2 B)
Ⅳ.課時小結
1.能熟練求解一個給定集合的補集.
2.注意一些特殊結論在以后解題中的應用. Ⅴ.課后作業
高一數學教學計劃4
進一步深化教育教學改革,樹立全新的語文教育觀,構建全新而科學的教學目標體系、數學網特制定高一上學期數學函數的基本性質教學計劃模板。
教材分析
函數性質是函數的固有屬性,是認識函數的重要手段,而函數性質可以由函數圖象直觀的反應出來,因此,函數各個性質的學習要從特殊的、已知的圖象入手,抽象出此類函數的共同特征,并用數學語言來定義敘述。基于此,本節的概念課教學要注重引導,注重知識的形成過程,習題課教學以具體技巧、方法作為輔助練習。
學情分析
學生對函數概念重新認識之后,可以結合初中學過的簡單函數的圖象對函數性質進行抽象定義。另外,為了方便學生做題及熟悉函數性質,還需要補充一些函數圖象的知識,例如平移、二次函數圖象、含絕對值函數的圖象、反比例函數及其變形的函數圖象。總之,本節課的教學要從學生認知實際出發,堅持從圖象中來到圖象中去的`原則。
教學建議
以圖象作為切入點進行概念課教學,引導學生對概念的形成有一個清晰的認識,尤其是概念中的部分關鍵詞要做深入講解,用函數圖象指導學生做題。
教學目標
知識與技能
(1)能理解函數單調性、最值、奇偶性的圖形特征
(2)會用單調性定義證明具體函數的單調性;會求函數的最值;會用奇偶性定義判斷函數奇偶性
(3)單調性與奇偶性的綜合題
(4)培養學生觀察、歸納、推理的抽象思維能力
過程與方法
(1)從觀察具體函數的圖像特征入手,結合相應問題引導學生一步步轉化到用數學語言形式化的建立相關概念
(2)滲透數形結合的數學思想進行習題課教學
情感、態度與價值觀
(1)使學生學會認識事物的一般規律:從特殊到一般,抽象歸納
(2)培養學生嚴密的邏輯思維能力,進一步規范學生用數學語言、數學符號進行表達
課時安排
(1)概念課:單調性2課時,最值1課時,奇偶性1課時
(2)習題課:5課時
高一數學教學計劃5
一、指導思想
準確把握《教學大綱》和《考試大綱》的各項基本要求,立足于基礎知識和基本技能的教學,注重滲透數學思想和方法。針對學生實際,不斷研究數學教學,改進教法,指導學法,奠定立足社會所需要的必備的基礎知識、基本技能和基本能力,著力于培養學生的創新精神,運用數學的意識和能力,奠定他們終身學習的基礎。
二、教學建議
1、深入鉆研教材。以教材為核心,深入研究教材中章節知識的內外結構,熟練把握知識的邏輯體系,細致領悟教材改革的精髓,逐步明確教材對教學形式、內容和教學目標的影響。
2、準確把握新大綱。新大綱修改了部分內容的教學要求層次,準確把握新大綱對知識點的基本要求,防止自覺不自覺地對教材加深加寬。同時,在整體上,要重視數學應用;重視數學思想方法的滲透。如增加閱讀材料(開闊學生的視野),以拓寬知識的廣度來求得知識的深度。
3、樹立以學生為主體的教育觀念。學生的發展是課程實施的出發點和歸宿,教師必須面向全體學生因材施教,以學生為主體,構建新的認識體系,營造有利于學生學習的氛圍。
4、發揮教材的多種教學功能。用好章頭圖,激發學生的學習興趣;發揮閱讀材料的功能,培養學生用數學的意識;組織好研究性課題的教學,讓學生感受社會生活之所需;小結和復習是培養學生自學的好材料。
5、落實課外活動的內容。組織和加強數學興趣小組的活動內容。
三、教學內容
第一章集合與函數概念
1.通過實例,了解集合的含義,體會元素與集合的屬于關系。
2.能選擇自然語言、圖形語言、集合語言(列舉法或描述法)描述不同的具體問題,感受集合語言的意義和作用。
3.理解集合之間包含與相等的含義,能識別給定集合的子集。
4.在具體情境中,了解全集與空集的含義。
5.理解兩個集合的并集與交集的含義,會求兩個簡單集合的并集與交集。
6.理解在給定集合中一個子集的補集的含義,會求給定子集的補集。
7.能使用Venn圖表達集合的關系及運算,體會直觀圖示對理解抽象概念的作用。
8.通過豐富實例,進一步體會函數是描述變量之間的依賴關系的重要數學模型,在此基礎上學習用集合與對應的語言來刻畫函數,體會對應關系在刻畫函數概念中的作用;了解構成函數的要素,會求一些簡單函數的.定義域和值域;了解映射的概念。
9.在實際情境中,會根據不同的需要選擇恰當的方法(如圖像法、列表法、解析法)表示函數。
10.通過具體實例,了解簡單的分段函數,并能簡單應用。
11.通過已學過的函數特別是二次函數,理解函數的單調性、最大(小)值及其幾何意義;結合具體函數,了解奇偶性的含義。
12.學會運用函數圖象理解和研究函數的性質。
課時分配(14課時)
1.1.1 | 集合的含義與表示 | 約1課時 | 9月1日 |
1.1.2 | 集合間的基本關系 | 約1課時 | 9月4日 | | 9月12日 |
1.1.3 | 集合的基本運算 | 約2課時 | |
小結與復習 | 約1課時 | ||
1.2.1 | 函數的概念 | 約2課時 | |
1.2.2 | 函數的表示法 | 約2課時 | 9月13日 | | 9月25日 |
1.3.1 | 單調性與最大(小)值 | 約2課時 | |
1.3.2 | 奇偶性 | 約1課時 | |
小結與復習 | 約2課時 |
第二章基本初等函數(I)
1.通過具體實例,了解指數函數模型的實際背景。
2.理解有理指數冪的含義,通過具體實例了解實數指數冪的意義,掌握冪的運算。
3。理解指數函數的概念和意義,能借助計算器或計算機畫出具體指數函數的圖象,探索并理解指數函數的單調性與特殊點。
4.在解決簡單實際問題過程中,體會指數函數是一類重要的函數模型。
5。理解對數的概念及其運算性質,知道用換底公式能將一般對數轉化成自然對數或常用對數;通過閱讀材料,了解對數的發現歷史以及其對簡化運算的作用。
6。通過具體實例,直觀了解對數函數模型所刻畫的數量關系,初步理解對數函數的概念,體會對數函數是一類重要的函數模型;能借助計算器或計算機畫出具體對數函數的圖象,探索并了解對數函數的單調性和特殊點。
7.通過實例,了解冪函數的概念;結合函數的圖象,了解它們的變化情況。
課時分配(15課時)
2.1.1 | 引言、指數與指數冪的運算 | 約3課時 | 9月27日30日 |
2.1.2 | 指數函數及其性質 | 約3課時 | 10月8日10日 |
2.2.1 | 對數與對數運算 | 約3課時 | 10月11日14日 |
2.2.2 | 對數函數及其性質 | 約3課時 | 10月15日18日 |
2.3 | 冪函數 | 約1課時 | 10月19日24日 |
小結 | 約2課時 |
第三章函數的應用
1。結合二次函數的圖象,判斷一元二次方程根的存在性及根的個數,從而了解函數的零點與方程根的聯系。
根據具體函數的圖象,能夠借助計算器用二分法求相應方程的近似解,了解這種方法是求方程近似解的常用方法。
2。利用計算工具,比較指數函數、對數函數以及冪函數增長差異;結合實例體會直線上升、指數爆炸、對數增長等不同函數類型增長的含義。
3。收集一些社會生活中普遍使用的函數模型(指數函數、對數函數、冪函數、分段函數等)的實例,了解函數模型的廣泛應用。
4。根據某個主題,收集17世紀前后發生的一些對數學發展起重大作用的歷史事件和人物(開普勒、伽利略、笛卡兒、牛頓、萊布尼茨、歐拉等)的有關資料或現實生活中的函數實例,采取小組合作的方式寫一篇有關函數概念的形成、發展或應用的文章,在班級中進行交流。
課時分配(8課時)
3.1.1 | 方程的根與函數的零點 | 約1課時 | 10月25日 |
3.1.2 | 用二分法求方程的近似解 | 約2課時 | 10月26日27日 |
3.2.1 | 幾類不同增長的函數模型 | 約2課時 | 10月30日 | 11月3日 |
3.2.2 | 函數模型的應用實例 | 約2課時 | |
小結 | 約1課時 |
考生只要在全面復習的基礎上,抓住重點、難點、易錯點,各個擊破,夯實基礎,規范答題,一定會穩中求進,取得優異的成績。
高一數學教學計劃6
一、制定的依據
隨著高一新教材的全面實施,本年級數學學科的教學進入了新課程改革實際階段。本計劃制定的依據主要是以下三個:
(1)二期課改的理念:一個為本、三類課程、三維目標
(2)新數學課程標準
(3)三本書:課本、教參、練習冊
(4)本校教研組對本學期學科的要求
二、基本情況分析
高一(3)全班共52人,男生24人,28人。上學期期末為區統測,平均分為54.1分,合格率為5%,優秀率為0%,低分率為56%。高一(4)全班共53人,男生26人,27人。上學期期末為區統測,平均分為50.3分,合格率為3%,優秀率為0%,低分率為62%。
從上學期期末統測來看,我班的學生在數學學習上可以說既有優勢也有不足。
優勢是:
1、有潛力;
2、師生關系比較融洽,互相信任,配合默契。
存在的不足是:
1、聰明有余,而努力不足;
2、男生聰明,上課積極,但不夠勤奮、踏實;認真,但上課效率不高,學得不夠靈活。
3、從期末統測來看,差生的比重大;
4、個別學生懶惰成性,學習態度、學習習慣極差;
5、平時學習不夠用心,自覺,專心思考、鉆研的時間太少;
6、一些同學學習成績起伏大,不穩定;
7、一些好學生滿足現狀,驕傲自滿,思想放松,導致成績退步;
8、學習興趣,動力,上進心不足。
三、本學期力爭達到的目標
1、完成三類課程的教學任務。基礎性課程要扎扎實實,夯實基礎;拓展性課程要適當延伸和補充,進一步提高學生的能力和水平;研究性課程要重過程,不重結果,培養學生自主學習,探索研究的習慣與品質。
2、完成新數學課程標準規定的教學目標。
3、進一步規范學生的學習習慣(包括預習、上課、作業、復習等)。
4、轉化學困生,提高成績。有些學生成績總是上不去,以為不是塊讀數學的料,久而久之,產生放棄數學,討厭數學的心理。由此,我在學習中,要多方面激發其學習興趣,耐心指導,不斷激勵。讓其感受到成功的喜悅,增強自信心,讓其喜歡數學,找到學習數學的樂趣。
5、一手提高優秀率,一手減少不及格人數,力爭班與班之間無明顯差距。
四、具體措施
1、從期末統測來看,學困生的比重大,優秀率沒有。為此要進行分層教學,學困生要注重基本題、常規題的反復操練,增強他們對數學學習的信心和興趣。好學生要避免無謂失分的情況,注重數學思想、方法、能力的培養,著眼于高三。總而言之,學困生還是繼續注重雙基的訓練,將做過,講過的題目再反復操練。另外也不能忽略了高分學生的培養,給好學生布置一些有質量的課外題,定期查閱,批改,答疑。這樣,通過抓兩頭,促中間,帶動整體水平的提高。
2、提高教學質量,要抓好課堂教學這一主陣地。根據課程標準,教參,切實落實教學目標,做到全面不遺漏,要以考綱為標準。另外,每節課要安排必要的練習時間,多安排隨堂測試是有好處的。試題講解時要突出方法,突出思考、分析過程,要暴露學生解題過程中思維、概念、計算等方面的錯誤,對學生的錯誤要有針對性的矯正,補償。不就題講題,注意適當的變式。幫助學生掌握解題的方法,積累解題經驗,課后要引導學生進行反思、訂正,以加深對概念的理解,方法的掌握。
3、從期末統測看學生應用能力明顯不足。教師要通過平時教學培養學生閱讀審題、數學建模的能力。讓學生熟悉一些常見的實際問題的背景,及解決這些問題的相關數學知識。
4、期末統測中選擇題普遍得分不高,應引起我們的重視,《高一數學教學計劃》由于選擇題只有答案,所以解答選擇題的'策略是:合理、迅速、檢驗,要善于轉化,避免機械套用公式、定理和“小題大做,舍近求遠,簡單問題復雜化”的不良習慣。另外,由填空題的錯誤表達和解答題的計算粗心、考慮不全面而造成的無謂失分,導致了分數上不去和好學生考不出高分。所以,為保證得到該得的分數,要求必須認真審題,明確要求,弄清概念,思考全面,正確表達。
5、注重講練結合。要多安排課堂練習,當堂檢測。當日作業,周練,月考要及時安排時間進行講評。平時要注意練習的有效性(適當題量,恰當難度,精選精練),規范書寫,認真批改,及時講評,反饋矯正(建立錯題集,進行再認識)。堅決反對只練不講,只講不練。評講中要針對學生的錯因進行分析,找出存在的問題,有針對性地加以彌補缺漏,發現問題要跟蹤到題,跟蹤到人。本次統測中許多試題平時講過,練過,考過,但錯誤仍然很多,值得我們重視與反思。
五、保障措施和可行性
1、關愛學生,嚴格要求,用情實現師與生的溝通,用景實現教與學的融合。
2、加強基礎知識、基本技能、基本方法的教學和基本能力的培養,精心組織教學內容,難度要適當,要追求最有效的訓練,要清楚哪些學生需要哪些訓練,切實注重部分學生的補差和提高,關注全體學生的學,基本教學要求要有效落實到位。
3、注重加強知識之間的聯系和綜合,內容和方式要更新,有層次推進,多角度理解,反思總結,重視教與學的方式多樣化。
4、激發興趣,重視過程教學,重視錯誤分析型學習。
5、重視開放性、研究性問題的教學,關注主觀評判性問題的學習,研究新題型,真正發展學生的數學素質,培養其數學能力。
6、結合二期課改新課程標準、教參,扎實落實集體備課,通過集體討論,抓住教學內容的實質,形成較好的教學方案,擬好典型例題、練習題、周練題、章考題、月考題。
7、加大課堂教改力度,培養學生的自主學習能力。
8、加強課外輔導,利用中午和晚間休息時間輔導學生答疑解惑、找學生談話等等。課外輔導是課堂的有力補充,是提高數學成績的有力手段。
9、搞好單元考試、階段性考試的分析。學生只有通過不斷的練習才能提高成績,單元考試、階段性考試是的練習,每次都要做好分析,并指導學生糾錯。在分析過程中要遵循自主的思維習慣,使學生真正理解,過關。
10、學生除配套練習冊外,每人訂一本《一課一練》作為補充練習,并要求每周寫學習感悟與學習疑惑,每人準備一本錯題本收集錯題,每人在課本留白處做好課堂筆記。另外,我自己有充足的時間與資料,進行習題精選與練習補充。
六、總目標達成度與現階段教學目標達成度的相關分析
本學期一定要在如何提高課堂效率上下功夫,同時抓平時的學習習慣,學習規范,作業質量等細節問題,切實提高學習的有效性。另外,在上學期的基礎上,本學期力爭消滅不及格,并使那些因無謂失分而導致分數起伏不定的學生能穩定下來,從而進一步提高優秀率。
目前,我班面臨的困難與問題還非常多,好在學生的學習勢頭保持良好。我和我們班的全體學生,將盡我們所能,力爭在本學期能有所收獲,更進一步。
七、課堂教學改革與創新、信息技術的應用與整合
1、結合二期課改,將“接受式學習”變為“主動式學習”,“啟發式學習”,將“要我學”變為“我要學”,并積極開展拓展性課程,研究性課程,培養學生的創新精神和實踐能力。
2、加強基礎訓練,但要避免“題海”戰術,要精講精練,舉一反三,突出方法,總結經驗,采取變式訓練,專題訓練等多種方式。
3、針對本學期三角公式多的特點,設計一些學生學習支持材料,如公式默寫表,公式背誦口訣,公式記憶方法,公式小卡片等。
4、借助“TI圖形計算器”強大的圖形功能以及多媒體教學設備,制作精美課件,輔助教學,使教學內容更加形象直觀,通俗易懂。
5、利用“Bb”系統建設e課堂,建設網絡學習包。
6、寫數學感悟或一周問題,與學生進行書面討論交流,答疑解惑,給予學法指導。
7、對不同層次的學生進行分層輔導,分層補充課外練習。
8、進行數學演講,了解數學史,寫寫數學周記等,提升學生的數學素養與興趣。
高一數學教學計劃7
教材教法分析
本節課是蘇教版普通高中課程標準實驗教科書數學必修(2)第2章第三節的第一節課。該課是在二維平面直角坐標系基礎上的推廣,是空間立體幾何的代數化。教材通過一個實際問題的分析和解決,讓學生感受建立空間直角坐標系的必要性,內容由淺入深、環環相扣,體現了知識的發生、發展的過程,能夠很好的誘導學生積極地參與到知識的探究過程中。同時,通過對《空間直角坐標系》的學習和掌握將對今后學習本節內容《空間兩點間的距離》和選修2—1內容《空間中的向量與立體幾何》有著鋪墊作用。由此,本課打算通過師生之間的合作、交流、討論,利用類比建立起空間直角坐標系。
學情分析
一方面學生通過對空間幾何體:柱、錐、臺、球的學習,處理了空間中點、線、面的關系,初步掌握了簡單幾何體的直觀圖畫法,因此頭腦中已建立了一定的空間思維能力。另一方面學生剛剛學習了解析幾何的基礎內容:直線和圓,對建立平面直角坐標系,根據坐標利用代數的方法處理問題有了一定的認識,因此也建立了一定的轉化和數形結合的思想。這兩方面都為學習本課內容打下了基礎。
教學目標
1、知識與技能
①通過具體情境,使學生感受建立空間直角坐標系的必要性
②了解空間直角坐標系,掌握空間點的坐標的確定方法和過程
③感受類比思想在探究新知識過程中的作用
2、過程與方法
①結合具體問題引入,誘導學生探究
②類比學習,循序漸進
3、情感態度與價值觀
通過用類比的數學思想方法探究新知識,使學生感受新舊知識的聯系和研究事物從低維到高維的一般方法。通過實際問題的引入和解決,讓學生體會數學的實踐性和應用性,感受數學刻畫生活的'作用,不斷地拓展自己的思維空間。
教學重點
本課是本節第一節課,關鍵是空間直角坐標系的建立,對今后相關內容的學習有著直接的影響作用,所以本課教學重點確立為“空間直角坐標系的理解”。
教學難點
“通過建立恰當的空間直角坐標系,確定空間點的坐標”。
先通過具體問題回顧平面直角坐標系,使學生體會用坐標刻畫平面內任意點的位置的方法,進而設置具體問題情境促發利用舊知解決問題的局限性,從而尋求新知,根據已有一定空間思維,所以能較容易得出“第三根軸”的建立,進而感受逐步發展得到“空間直角坐標系”的建立,再逐步掌握利用坐標表示空間任意點的位置。總得來說,關鍵是具體問題情境的設立,不斷地讓學生感受,交流,討論。
高一數學教學計劃8
不論從事何種工作,如果要想做出高效、實效,務必先從自身的工作計劃開始。有了計劃,才不致于使自己思想迷茫。下文為您準備了高一數學第一章函數及其表示教學計劃。
一、教材內容分析
函數是高中數學的重要內容,函數的表示法是“函數及其表示”這一節的主要內容之一。學習函數的表示法,不僅是研究函數本身和應用函數解決實際問題所必須涉及的問題,也是加深對函數概念理解所必須的。同時,基于高中階段所接觸的許多函數均可用幾種不同的方式表示,因而學習函數的表示也是領悟數學思想方法(如數形結合、化歸等)學會根據問題需要選擇表示方法的重要過程。
學生在學習用集合與對應的語言刻畫函數之前,比較習慣于用解析式表示函數,但這是對函數很不全面的認識。在本節中,從引進函數概念開始,就比較注重函數的不同表示方法:解析法、圖象法、列表法。函數的不同表示法能豐富對函數的認識,幫助理解抽象的函數概念。特別是在信息技術環境下,可以使函數在數形結合上得到更充分的表現,使學生更好地體會這一重要的數學思想方法。因此,在研究函數時,應充分發揮圖象直觀的作用;在研究圖象時要注意代數刻畫,以求思考和表述的精確性。
二、教學目標分析
根據《普通高中數學課程標準》(實驗)和新課改的理念,我從知識、能力和情感三個方面制訂教學目標。
1、明確函數的三種表示方法(圖象法、列表法、解析法),通過具體的實例,了解簡單的分段函數及其應用。
2、通過解決實際問題的過程,在實際情境中能根據不同的需要選擇恰當的方法表示函數,發展學生思維能力。
3、通過一些實際生活應用,讓學生感受到學習函數表示的必要性;通過函數的解析式與圖象的結合滲透數形結合思想。
三、教學問題診斷分析
(1)初中已經接觸過函數的三種表示法:解析法、列表法和圖象法、高中階段重點是讓學生在了解三種表示法各自優點的基礎上,使學生會根據實際情境的需要選擇恰當的表示方法。因此,教學中應該多給出一些具體問題,讓學生在比較、選擇函數模型表示方式的過程中,加深對函數概念的整體理解,而不再誤以為函數都是可以寫出解析式的.。
(2)分段函數大量存在,但比較繁瑣。一方面,要加強用分段函數模型刻畫實際問題的實踐,另一方面,還可以通過動畫模擬,讓學生體驗到,分段函數的問題應該分段解決,然后再綜合。這也為下一步研究分段函數的單調性等性質打下伏筆。
四、本節課的教法特點以及預期效果分析
(一)本節課的教法特點
根據教學內容,結合學生的具體情況,我采用了學生自主探究和教師啟發引導相結合的教學方式。在整個的教學過程中讓學生盡可能地動手、動腦,調動學生積極性,充分地參與學習的全過程。倡導學生主動參與、樂于探究、勤于動手,逐步培養學生能夠利用函數來處理信息的能力。
(二)本節課預期效果
1、通過具體的實例,讓學生體會函數三種表示法的優、缺點。
創造問題情景這種情景的創設以具體事例出發,印象深刻。所以在引入時先從函數的三要素入手,強調要素之一對應關系,然后給出三個具體實例:
(1)炮彈發射時,距離地面的高度隨時間變化的情況;
(2)用圖表的形式給出臭氧層空洞的面積與時間的關系;
(3)恩格爾系數的變化情況。
指出每種對應分別以怎樣的形式展現。引出函數的表示方法這一課題。因為我們這節課的重點是讓學生在實際情景中,會根據不同的需要選擇恰當的表示方法。會選擇的前提是理解,這些完全靠學生的現實經驗,讓學生自己去發現各自的優劣。這為第一道例題打下基礎。
例1通過具體例子,讓學生用三種不同的表示方法來表示的同一個函數,進一步理解函數概念。把問題交給學生,學生獨立完成,并自己檢查發現問題,加深學生對三種表示法的深刻理解。學生思考函數表示法的規定。注意本例的設問,此處“”有三種含義,它可以是解析表達式,可以是圖象,也可以是對應值表。
由于這個函數的圖象由一些離散的點組成,與以前學習過的一次函數、二次函數的圖象是連續的曲線不同。通過本例,進一步讓學生感受到,函數概念中的對應關系、定義域、值域是一個整體、函數y=5x不同于函數y=5x(x∈{1,2,3,4,5}),前者的圖象是(連續的)直線,而后者是5個離散的點。由此認識到:“函數圖象既可以是連續的曲線,也可以是直線、折線、離散的點,等等。”并明確:如何判斷一個圖形是否是函數圖象方法?
2、讓學生會根據不同的實例選擇恰當的方法表示函數
例2用表格法表示了函數。要“對這三位運動員的成績做一個分析”不太方便,因此需要改變函數表示的方法,選擇圖象法比較恰當。教學中,先不必直接把圖象法告訴學生,可以讓學生說說自己是如何分析的,選擇了什么樣的方法來表示這三個函數、通過比較各種不同的表示方法,達成共識:用圖象法比較好。培養學生根據實際需要選擇恰當的函數表示法的能力。
學生經過觀察、思考獲得結論、比如總體水平(朱啟南成績好)變化趨勢(劉天佑的成績在逐步提高)與運動員的平均分的比較,等等。培養學生的觀察能力、獲取有用信息的能力。同時要求學生注意圖中的虛線不是函數圖象的組成部分,之所以用虛線連接散點,主要是為了區分這三個函數,直觀感受三個函數的圖象具有整體性,也便于分析成績情況,加以比較。
3、通過具體的實例,了解分段函數及其表示
生活中有很多可以用分段函數描述的實際問題,如出租車的計費、個人所得稅納稅稅額等等。通過例3的教學,讓學生了解分段函數及其表示。為了便于學生理解,給出了實際情況的模擬。可以使函數在數與形兩方面的結合得到更充分的表現,使學生通過函數的學習更好地體會數形結合的數學思想方法。
高一數學教學計劃9
一、教學分析
1、分析教材
本章教材整體主要分成三大部分:
(1)、圓的標準方程與一般方程;
(2)、直線與圓、圓與圓的位置關系;
(3)、空間直角坐標系以及空間兩點間的距離公式。
圓的方程是在前一章直線方程基礎上引入的新的曲線方程,更進一步要求“數與形”結合。所以學習有關圓的方程時,仍仍然沿用直線方程中使用的坐標法,繼續運用坐標法研究直線與圓、圓與圓的位置關系等幾何問題。此外還要學習空間直角坐標系的有關知識,以便為今后用坐標法研究空間幾何對象奠定基礎。這些知識是進一步學習圓錐曲線方程、導數和積分的基礎。
2、分析學生
高中一年級的學生還沒有建立起比較好的數形結合的思想,前面學習過直線知識,只是使學生有了用坐標法研究問題的基本思路,通過圓的概念的引入及其現實生活中圓的例子,啟發學生學習的興趣及研究問題的方法,培養學生分析探索問題的能力,熟練的掌握解決解析幾何問題的方法-坐標法,滲透數形結合的思想研究問題時抓住問題的本質,研究細致思考,規范得出解答,體現運動變化,對立統一的思想
3、教學重點與難點
重點:圓的標準方程與一般方程;利用直線與圓的方程判斷直線與圓、圓與圓的位置關系;空間直角坐標系的基本認識。
難點:直線與圓的方程的應用;會求解簡單的直線與圓的相關曲線的方程;建立空間直角坐標系。
二、教學目標
1、掌握圓的定義和圓標準方程、一般方程的概念;能根據圓的方程求圓心和半徑,初步掌握求圓的方程的方法。
2、掌握直線與圓的位置關系的判定。
3、在進一步培養學生類比、數形結合、分類討論和化歸的數學思想方法的過程中,提高學生學習能力。
4、培養學生科學探索精神、審美觀和理論聯系實際思想。
三、教學策略
1、教學模式
本節內容是運用“問題解決”課堂教學模式的一次嘗試,采用探究、討論的
教學方法,通過問題激發學生求知欲,使學生主動參與數學實踐活動,以獨立思考和相互交流的形式,在教師的指導下發現、分析和解決問題,掌握數學基本知識和基本能力,培養積極探索和團結協作的科學精神。
2、教學方法與手段--充分利用信息技術,合理整合課程資源
采用探究、討論的教學方法,通過問題激發學生求知欲采用多媒體技術,目的在于充分利用其優良的傳播功能,大容量信息的呈現和生動形象的演示(尤其是動畫效果)對提高學生學習興趣、激活學生思維、加深概念理解有積極作用。制作中,采用交互技術,使課件的機動性得到加強。
四、對內容安排的說明
本章分三部分:圓的標準方程與一般方程;直線與圓、圓與圓的'位置關系;空間直角坐標系。
1、建立圓的方程是本節的主要內容之一。根據圓的幾何特征(主要是動點與定點間距離恒定)建立適當的坐標系,再根據曲線上的點所滿足的幾何條件,求出點的坐標所滿足的曲線方程。
通過研究方程來研究曲線的性質是解析幾何的另一個主要內容,這就是解析幾何通過代數方法研究幾何圖形的特點,也就是坐標法。始終強調曲線方程與曲線圖像之間的一一對應。這一思想應該貫穿于整個圓的教學。
2.通過方程,研究直線與圓、圓與圓的位置關系是本章的主要內容之一。判斷直線與圓、圓與圓的位置關系可以從兩個方面著手:
(1)。兩條曲線有無公共點,等價于由它們方程聯立的方程組有無實數解。方程組有幾組實數解,這兩條曲線就有幾個公共點;方程組沒有實數解,這兩條曲線就沒有公共點。
(2)。運用平面幾何知識,把直線與圓、圓與圓位置關系的結論轉化為相應的代數結論。
3、坐標法是研究幾何問題的重要方法,在教學過程中,應該始終貫穿坐標法這一重要思想,不怕重復;通過坐標系,把點和坐標、曲線和方程聯系起來,實現形和數的統一。
用坐標法解決幾何問題時,先用坐標和方程表示相應的幾何對象,然后對坐標和方程進行代數討論;最后再把代數運算結果翻譯成相應的幾何結論。這就是用坐標法解決平面幾何問題的“三步曲”:
第一步:建立適當的平面直角坐標系,用坐標和方程表示問題中涉及的幾何元素,將平面幾何問題轉化為代數問題;
第二步:通過代數運算,解決代數問題;
第三步:把代數運算結果翻譯成幾何結論。
五、教學評價
㈠過程性評價
1、教學過程中,教師的講解和學生的練習緊扣教學目標,內容深淺要分層次,設計的問題要照顧好、中、差。
2、對于方程的推導運用的方法,學生理解起來難度較大,主要采用讓學生理解的基礎上進行檢測反饋
㈡終結性評價
1、課程內容全部結束后,讓學生分組交流、討論后,選代表談收獲、體會和感想。
2、留課后作業(扣教學目標、分類型、分層次,落實學生為主體),讓學生認真理解和鞏固,了解圓的標準方程和一般方程,以及直線與圓位置關系,做完課后習題,做好作業。
高一數學教學計劃10
教學目標 :
(1)理解子集、真子集、補集、兩個集合相等概念;
(2)了解全集、空集的意義,
(3)掌握有關的符號及表示方法,會用它們正確表示一些簡單的集合,培養學生的符號表示的能力;
(4)會求已知集合的子集、真子集,會求全集中子集在全集中的補集;
(5)能判斷兩集合間的包含、相等關系,并會用符號及圖形(文氏圖)準確地表示出來,培養學生的數學結合的數學思想;
(6)培養學生用集合的觀點分析問題、解決問題的能力.
教學重點:子集、補集的概念
教學難點 :弄清元素與子集、屬于與包含之間的區別
教學用具:幻燈機
教學過程 設計
(一)導入 新課
上節課我們學習了集合、元素、集合中元素的三性、元素與集合的關系等知識.
【提出問題】(投影打出)
已知 , , ,問:
1.哪些集合表示方法是列舉法.
2.哪些集合表示方法是描述法.
3.將集M、集從集P用圖示法表示.
4.分別說出各集合中的元素.
5.將每個集合中的元素與該集合的關系用符號表示出來.將集N中元素3與集M的關系用符號表示出來.
6.集M中元素與集N有何關系.集M中元素與集P有何關系.
【找學生回答】
1.集合M和集合N;(口答)
2.集合P;(口答)
3.(筆練結合板演)
4.集M中元素有-1,1;集N中元素有-1,1,3;集P中元素有-1,1.(口答)
5. , , , , , , , (筆練結合板演)
6.集M中任何元素都是集N的元素.集M中任何元素都是集P的元素.(口答)
【引入】在上面見到的集M與集N;集M與集P通過元素建立了某種關系,而具有這種關系的兩個集合在今后學習中會經常出現,本節將研究有關兩個集合間關系的問題.
(二)新授知識
1.子集
(1)子集定義:一般地,對于兩個集合A與B,如果集合A的任何一個元素都是集合B的元素,我們就說集合A包含于集合B,或集合B包含集合A。
記作: 讀作:A包含于B或B包含A
當集合A不包含于集合B,或集合B不包含集合A時,則記作:A B或B A.
性質:① (任何一個集合是它本身的子集)
② (空集是任何集合的子集)
【置疑】能否把子集說成是由原來集合中的部分元素組成的集合?
【解疑】不能把A是B的子集解釋成A是由B中部分元素所組成的集合.
因為B的子集也包括它本身,而這個子集是由B的全體元素組成的.空集也是B的子集,而這個集合中并不含有B中的元素.由此也可看到,把A是B的子集解釋成A是由B的部分元素組成的集合是不確切的.
(2)集合相等:一般地,對于兩個集合A與B,如果集合A的任何一個元素都是集合B的元素,同時集合B的任何一個元素都是集合A的元素,我們就說集合A等于集合B,記作A=B。
例: ,可見,集合 ,是指A、B的所有元素完全相同.
(3)真子集:對于兩個集合A與B,如果 ,并且 ,我們就說集合A是集合B的真子集,記作: (或 ),讀作A真包含于B或B真包含A。
【思考】能否這樣定義真子集:“如果A是B的子集,并且B中至少有一個元素不屬于A,那么集合A叫做集合B的真子集.”
集合B同它的真子集A之間的關系,可用文氏圖表示,其中兩個圓的內部分別表示集合A,B.
【提問】
(1) 寫出數集N,Z,Q,R的包含關系,并用文氏圖表示。
(2) 判斷下列寫法是否正確
① A ② A ③ ④A A
性質:
(1)空集是任何非空集合的真子集。若 A ,且A≠ ,則 A;
(2)如果 , ,則 .
例1 寫出集合 的所有子集,并指出其中哪些是它的真子集.
解:集合 的所有的子集是 , , , ,其中 , , 是 的真子集.
【注意】(1)子集與真子集符號的方向。
(2)易混符號
①“ ”與“ ”:元素與集合之間是屬于關系;集合與集合之間是包含關系。如 R,{1} {1,2,3}
②{0}與 :{0}是含有一個元素0的集合, 是不含任何元素的集合。
如: {0}。不能寫成 ={0}, ∈{0}
例2 見教材P8(解略)
例3 判斷下列說法是否正確,如果不正確,請加以改正.
(1) 表示空集;
(2)空集是任何集合的真子集;
(3) 不是 ;
(4) 的所有子集是 ;
(5)如果 且 ,那么B必是A的.真子集;
(6) 與 不能同時成立.
解:(1) 不表示空集,它表示以空集為元素的集合,所以(1)不正確;
(2)不正確.空集是任何非空集合的真子集;
(3)不正確. 與 表示同一集合;
(4)不正確. 的所有子集是 ;
(5)正確
(6)不正確.當 時, 與 能同時成立.
例4 用適當的符號( , )填空:
(1) ; ; ;
(2) ; ;
(3) ;
(4)設 , , ,則A B C.
解:(1)0 0 ;
(2) = , ;
(3) , ∴ ;
(4)A,B,C均表示所有奇數組成的集合,∴A=B=C.
【練習】教材P9
用適當的符號( , )填空:
(1) ; (5) ;
(2) ; (6) ;
(3) ; (7) ;
(4) ; (8) .
解:(1) ;(2) ;(3) ;(4) ;(5)=;(6) ;(7) ;(8) .
提問:見教材P9例子
(二) 全集與補集
1.補集:一般地,設S是一個集合,A是S的一個子集(即 ),由S中所有不屬于A的元素組成的集合,叫做S中子集A的補集(或余集),記作 ,即
.
A在S中的補集 可用右圖中陰影部分表示.
性質: S( SA)=A
如:(1)若S={1,2,3,4,5,6},A={1,3,5},則 SA={2,4,6};
(2)若A={0},則 NA=N*;
(3) RQ是無理數集。
2.全集:
如果集合S中含有我們所要研究的各個集合的全部元素,這個集合就可以看作一個全集,全集通常用表示.
注: 是對于給定的全集 而言的,當全集不同時,補集也會不同.
例如:若 ,當 時, ;當 時,則 .
例5 設全集 , , ,判斷 與 之間的關系.
高一數學教學計劃11
一、教材依據
本節課是北師大版數學(必修2)第二章《解析幾何初步》第一節《1.2直線的方程》第一部分《直線方程的點斜式》內容。
二、教材分析
直線方程的點斜式給出了根據已知一個點和斜率求直線方程的方法和途徑。在求直線的方程中,直線方程的點斜式是基本的,直線方程的斜截式
、兩點式都是由點斜式推出的。從初中代數中的一次函數引入,自然過渡到本節課想要解決的問題求直線方程問題。在引入,過程中要讓學生弄清
直線與方程的一一對應關系,理解研究直線可以從研究方程和方程的特征入手。
在推導直線方程的點斜式時,根據直線這一結論,先猜想確定一條直線的條件,再根據猜想得到的條件求出直線方程。
三、教學目標
知識與技能:
(1)理解直線方程的點斜式、斜截式的形式特點和適用范圍;
(2)能正確利用直線的點斜式、斜截式公式求直線方程。
(3)體會直線的斜截式方程與一次函數的關系。
過程與方法:在已知直角坐標系內確定一條直線的幾何要素直線上的一點和直線的傾斜角的基礎上,通過師生探討,得出直線的點斜式方程;學生
通過對比理解截距與距離的區別。
情態與價值觀:通過讓學生體會直線的'斜截式方程與一次函數的關系,進一步培養學生數形結合的思想,滲透數學中普遍存在相互聯系、相互轉化
等觀點,使學生能用聯系的觀點看問題。
四、教學重點
重點:直線的點斜式方程和斜截式方程。
五、教學難點
難點:直線的點斜式方程和斜截式方程的應用。
要點:運用數形結合的思想方法,幫助學生分析描述幾何圖形。
六、教學準備
1.教學方法的選擇:啟發、引導、討論.
創設問題情境,采用啟發誘導式的教學模式引導學生探索討論,學生主動參與提出問題、探索問題和解決問題的過程,突出以學生為主體的探究性
學習活動。
2.通過讓學生觀察、討論、辨析、畫圖,親身實踐,調動多感官去體驗數學建模的思想;學生要學會用數形結合的方法建立起代數問題與幾何問題
間的密切聯系。為使學生積極參與課堂學習,我主要指導了以下的學習方法:
①.讓學生自己發現問題,自己通過觀察圖像歸納總結,自己評析解題對錯,從而提高學生的參與意識和數學表達能力。
②.分組討論。
高一數學教學計劃12
一、指導思想
本學期高一備課組以學校工作計劃為指導,以提高教學質量為目標,以優化課堂教學為中心,團結合作,努力提高思想素質和業務素質,團結合作,互相學習,認真備好課,上好每一節課,并結合新教材的特點,開展研究性學習的活動,在教學中,抓好基礎知識教學,著重學生本事的培養,打好基礎,全面提高,為來年高考作好充分的準備,爭取優異的成績。
二、教學目標、
(一)情意目標
(1)經過分析問題的方法的教學,培養學生的學習的興趣。
(2)供給生活背景,經過數學建模,讓學生體會數學就在身邊,培養學數學用數學的意識。(3)在探究三角函數的性質,體驗獲得數學規律的艱辛和樂趣,在分組研究合作學習中學會交流、相互評價,提高學生的合作意識
(4)基于情意目標,調控教學流程,堅定學習信念和學習信心。
(5)還時空給學生、還課堂給學生、還探索和發現權給學生,給予學生自主探索與合作交流的機會,在發展他們思維本事的同時,發展他們的數學情感、學好數學的自信心和追求數學的科學精神。
(6)讓學生體驗“發現——挫折——矛盾——頓悟——新的發現”這一科學發現歷程法。
(二)本事要求
1、培養學生記憶本事。
(1)經過定義、命題的總體結構教學,揭示其本質特點和相互關系,培養對數學本質問題的背景事實及具體數據的記憶。
(3)經過揭示三角函數有關概念、公式和圖形的對應關系,培養記憶本事。
2、培養學生的運算本事。
(1)經過概率的`訓練,培養學生的運算本事。
(2)加強對概念、公式、法則的明確性和靈活性的教學,培養學生的運算本事。
(3)經過算法初步,1算法步驟2程序框圖(起始框,確定框,附值框,)3silab語言(順序,條件語句,循環語句)。第二部分,統計,第三步分,概率,古典概型,幾何概型。的教學,提高學生是運算過程具有明晰性、合理性、簡捷性本事。
(4)經過一題多解、一題多變培養正確、迅速與合理、靈活的運算本事,促使知識間的滲透和遷移。
(5)利用數形結合,另辟蹊徑,提高學生運算本事。
三、具體措施
1、期中考前上好第一冊(必修3),期中考后完成好必修4
2、抓好數學補差,培優活動各班在星期1或星期4的午時
3、立足于教材。
4、要求學生完成課后練習及每一章課后習題
5、我們組還繼續學習了《課堂教學論》,《現代教育技術》,努力學習多媒體課件的制作。
6、繼續認真開展師徒結對活動,以老帶新。師徒間經常聽課交流,認真評課。集中備課,共同商討教材等。
7抓好競賽輔導,時間定于周三、周四的提前時間,周六的午時1點到3點;任教教師:高一全體數學教師。
8、段統一考試在周日或者周三的晚自修時間,每隔2周考一次;
9、上學期必修4的學分認定考試補考及落實工作;
10、響應學校教務處的備課計劃安排,督促組員落實工作;
11、抓好團體備課
高一數學教學計劃13
一、指導思想:
使學生學好從事社會主義現代化建設和進一步學習現代科學技術所必需的數學基礎知識和基本技能,培養學生的運算能力、邏輯思維能力和空間想象能力,以逐步形成運用數學知識來分析和解決實際問題的能力。要培養學生對數學的興趣,激勵學生為實現四個現代化學好數學的積極性,培養學生的科學態度和辨證唯物主義的觀點。
二、基本情況分析:
1、4班共xx人,男生xx人,女生xx人;本班相對而言,數學尖子約xx人,中上等生約xx人,中等生約xx人,中下生約xx人,差生約xx人。
5班共xx人,男生xx人,女生xx人;本班相對而言,數學尖子約xx人,中上等生約xx人,中等生約xx人,中下生約xx人,差生約xx人。
2、4班在初中升入高中的升學考試中,數學成績在100及以上的有xx人,80—99有xx人,60—79有xx人,40—59有xx人,40以下有xx人,其中最高分為xx,最低分為xx。
5班在初中升入高中的升學考試中,數學成績在100及以上的有xx人,80—99有xx人,60—79有xx人,40—59有xx人,40以下有xx人,其中最高分為xx,最低分為xx。
3、4/5班分別為高一年級9個班中編排一個普高班和一個普高班之后的體育班,整體分析的結果是:
三、教材分析:
1、教材內容:集合、一元二次不等式、簡易邏輯、映射與函數、指數函數和對數函數、數列、等差數列、等比數列。
2、集合概念及其基本理論,是近代數學最基本的內容之一;函數是中學數學中最重要的基本概念之一;數列有著廣泛的應用,是進一步學習高等數學的基礎。
3、教材重點:幾種函數的圖像與性質、不等式的解法、數列的概念、等差數列與等比數列的通項公式、前n項和的公式。
4、教材難點:關于集合的各個基本概念的涵義及其相互之間的區別和聯系、映射的概念以及用映射來刻畫函數概念、反函數、一些代數命題的證明、
5、教材關鍵:理解概念,熟練、牢固掌握函數的圖像與性質。
6、采用了由淺入深、減緩坡度、分散難點,逐步展開教材內容的做法,符合從有限到無限的認識規律,體現了從量變到質變和對立統一的辯證規律。每階段的內容相對獨立,方法比較單一,有助于掌握每一階段內容。
7、各部分知識之間的聯系較強,每一階段的知識都是以前一階段為基礎,同時為下階段的學習作準備。
8、全期教材重要的內容是:集合運算、不等式解法、函數的奇偶性與單調性、等差與等比數列的通項和前n項和。
四、教學要求:
1、理解集合、子集、交集、并集、補集的概念。了解空集和全集的意義,了解屬于、包含、相等關系的意義,能掌握有關的術語和符號,能正確地表示一些簡單的集合。
2、掌握一元二次不等式的解法和絕對值不等式的解法,并能熟練求解。
3、了解命題的'概念、邏輯聯結詞的含義,掌握四種命題及其關系,掌握充分、必要、充要條件,初步掌握反證法。
4、了解映射的概念,在此基礎上理解函數及其有關的概念,掌握互為反函數的函數圖象間的關系。
5、理解函數的單調性和奇偶性的概念,并能判斷一些簡單函數的單調性和奇偶性,能利用函數的奇偶性與圖象的對稱性的關系描繪圖象。
6、掌握指數函數、對數函數的概念及其圖象和性質,并會解簡單的函數應用問題。
7、使學生理解數列的有關概念,掌握等差數列與等比數列的概念、通項公式、前n項和的公式,并能夠運用這些知識解決一些問題。
五、教學措施:
1、激發學生的學習興趣。由數學活動、故事、吸引人的課、合理的要求、師生談話等途徑樹立學生的學習信心,提高學習興趣,在主觀作用下上升和進步。
2、注意從實例出發,從感性提高到理性;注意運用對比的方法,反復比較相近的概念;注意結合直觀圖形,說明抽象的知識;注意從已有的知識出發,啟發學生思考。
3、加強培養學生的邏輯思維能力就解決實際問題的能力,以及培養提高學生的自學能力,養成善于分析問題的習慣,進行辨證唯物主義教育。
4、抓住公式的推導和內在聯系;加強復習檢查工作;抓住典型例題的分析,講清解題的關鍵和基本方法,注重提高學生分析問題的能力。
5、自始至終貫徹教學四環節,針對不同的教材內容選擇不同教法。
高一數學教學計劃14
一、指導思想
準確把握《教學大綱》和《考試大綱》的各項基本要求,立足于基礎知識和基本技能的教學,注意參透教學思想和方法,針對學生實際,不斷研究數學教學,改進教法,指導學法。
數學目標要求
1、理解集合及充要條件的有關知識,掌握不等式的性質,一元二次不等式、絕對值不等的解法,掌握函數的概念及指數函數,對函數和幕函數的性質和圖象。
2、理解角的概念的推廣和三角函數的定義,掌握基本的三角函數公式和三角函數巔峰性質、圖像,理解三角函數的周期性
3、理解數列的概念,掌握等差數列和等比數列的性質,并會求等差數列、等比數列前n項的和。
4、掌握平面向量時有關概念和運算,掌握直線和圓的方程的求法。
5、掌握空間幾何直線、平面之間的位置關系及其判定方法。
6、掌握概率與統計初步里的計數原理,理解三種抽樣方法,會求簡單問題的概率。
二、教學建議
1、深入鉆研教材。以教材為核心,深入研究教材中章節知識的內外結構,熟練掌握知識和邏輯體系,細致領悟教材改革的精髓,逐步明確教材教學形式,內容和教學目標的影響。
2、準確吧握新大綱。新大綱修改了部分內容的教學要求層次,把握新大綱對知識點的基本要求,防止自覺不自覺地對教材加深加寬。同時,在整體上要重視數學應用;重視教學思想方法的參透。
3、樹立以學生為主體的教育觀念。學生的發展是課程實施的出發點和歸宿,教師必須面向全體學生因材施材,以學生為賬戶提,構建新的認識體系,營造有利于學生的氛圍。
4、發揮教材的.多種教學功能。用好章頭圖,激發學生學習興趣;發揮閱讀材料的功能,培養學生用數學的意識;組織好研究性課題的教學,讓學生感受社會生活之所需;小結和復習是培養學生自學的好材料。
5、加強課堂研究,科學設計教學方法。根據教材的內容和特征,實行啟發式和討論式教學。發揚教學民主,師生雙方親切合作,交流互動,讓學生感受、理解知識的產生和發展的過程。根據材料個章節的重難點制定教學專題,積累教學經驗。
6、落實課外活動內容,組織和加強數學興趣小組的活動內容,加強對高層次學生的競賽輔導,培養拔尖人才。
三、教學進度
高一上學期
高一下學期
周次內容
周次內容
1-4復習初中知識和集合1-3數列
5充要條件
4-6平面向量
6-7不等式7-9直線的方程
8-10
函數10期中考試
11
期中考試11-12圓的方程
12-14指數函數與對數函數13-15
立體幾何
15-18三角函數16-18概率與統計初步
19-20期末、總復習、考試19-20
總復習與期末考試
總結:制定教學計劃的主要目的是為了全面了解學生的數學學習歷程,激勵學生的學習和改進教師的教學。
高一數學教學計劃15
本節課的教學內容,是指數函數的概念、性質及其簡單應用。教學重點是指數函數的圖像與性質。
I這是指數函數在本章的位置。
指數函數是學生在學習了函數的概念、圖象與性質后,學習的第一個新的初等函數。它是一種新的函數模型,也是應用研究函數的一般方法研究函數的一次實踐。指數函數的學習,一方面可以進一步深化對函數概念的理解,另一方面也為研究對數函數、冪函數、三角函數等初等函數打下基礎。因此,本節課的學習起著承上啟下的作用,也是學生體驗數學思想與方法應用的過程。
指數函數模型在貸款利率的計算以及考古中年代的測算等方面有著廣泛地應用,與我們的日常生活、生產和科學研究有著緊密的聯系,因此,學習這部分知識還有著一定的現實意義。
Ⅱ.教學目標設置
1。學生能從具體實例中概括指數函數典型特征,并用數學符號表示,建構指數函數的概念。
2。學生通過自主探究,掌握指數函數的圖象特征與性質,能夠利用指數函數的性質比較兩個冪的大小。
3。學生運用數形結合的'思想,經歷從特殊到一般、具體到抽象的研究過程,體驗研究函數的一般方法。
4。在探究活動中,學生通過獨立思考和合作交流,發展思維,養成良好思維習慣,提升自主學習能力。
Ⅲ.學生學情分析
授課班級學生為南京師大附中實驗班學生。
1。學生已有認知基礎
學生已經學習了函數的概念、圖象與性質,對函數有了初步的認識。學生已經完成了指數取值范圍的擴充,具備了進行指數運算的能力。學生已有研究一次函數、二次函數等初等函數的直接經驗。學生數學基礎與思維能力較好,初步養成了獨立思考、合作交流、反思質疑等學習習慣。
2。達成目標所需要的認知基礎
學生需要對研究的目標、方法和途徑有初步的認識,需要具備較好的歸納、猜想和推理能力。
3。難點及突破策略
難點:1。 對研究函數的一般方法的認識。
2。 自主選擇底數不當導致歸納所得結論片面。
突破策略:
1。教師引導學生先明確研究的內容與方法,從總體上認識研究的目標與手段。
2。組織匯報交流活動,展現思維過程,相互評價,相互啟發,促進反思。
3。對猜想進行適當地證明或說明,合情推理與演繹推理相結合。
Ⅳ.教學策略設計
根據學生已有學習基礎,為提升學生的學習能力,本節課的教學,采用自主學習方式。通過教師引領學生經歷研究函數及其性質的過程,認識研究的目標與策略,在研究的過程中逐漸完善研究的方法與手段。
學生的自主學習,具體落實在三個環節:
(1)建構指數函數概念時,學生自主舉例,歸納特征,并用符號表示,討論底數的取值范圍,完善概念。
(2)探究指數函數圖象特征與性質時,學生自選底數,開展自主研究,并通過匯報交流相互提升。
(3)性質應用階段,學生自主舉例說明指數函數性質的應用。
研究函數的性質,可以從形和數兩個方面展開。從圖形直觀和數量關系兩個方面,經歷從特殊到一般、具體到抽象的過程。借助具體的指數函數的圖象,觀察特征,發現函數性質,進而猜想、歸納一般指數函數的圖象特征與性質,并適時應用函數解析式輔以必要的說明和證明。
Ⅴ.教學過程設計
1。創設情境建構概念
師:我們已經學習了函數的概念、圖象與性質,大家都知道函數可以刻畫兩個變量之間的關系。你能用函數的觀點分析下面的例子嗎?
師:大家知道細胞分裂的規律嗎?(出示情境問題)
[情境問題1]某細胞分裂時,由一個分裂成2個,2個分裂成4個,4個分裂成8個,……如果細胞分裂x次,相應的細胞個數為y,如何描述這兩個變量的關系?
[情境問題2]某種放射性物質不斷變化為其他物質,每經過一年,這種物質剩余的質量是原來的84%。如果經過x年,該物質剩余的質量為y,如何描述這兩個變量的關系?
[師生活動]引導學生分析,找到兩個變量之間的函數關系,并得到解析式y=2x和y=0。84x。
師:這樣的函數你見過嗎?是一次函數嗎?二次函數?這樣的函數有什么特點?你能再舉幾個例子嗎?
〖問題1類似的函數,你能再舉出一些例子嗎?這些函數有什么共同特點?能否寫成一般形式?
[設計意圖]通過列舉生活中指數函數的具體例子,感受指數函數與實際生活的聯系。引導學生從具體實例中概括典型特征,初步形成指數函數的概念,并用數學符號表示。初步得到y=ax這個形式后,引導學生關注底數的取值范圍,完成概念建構。指數范圍擴充到實數后,關注x∈R時,y=ax是否始終有意義,因此規定a>0。a≠1并不是必須的,常函數在高等數學里是基本函數,也有重要的意義。為了使指數函數與對數函數能構成反函數,規定a≠1。此處不需對此解釋,只要補充說“1的任何次方總是1,所以通常還規定a≠1”。
[師生活動]學生舉例,教師引導學生觀察,其共同特點是自變量在指數位置,從而初步建立函數模型y=ax。
[教學預設]學生能舉出具體的例子——y=3x,y=0。5x…。如出現y=(-2)x最好,更便于引發對a的討論,但一般不會出現。進而提出這類函數一般形式y=ax。
Ⅵ.教后反思回顧
一、對于指數函數概念的認識
指數函數是一種函數模型,其基本特征是自變量在指數位置。底數取值范圍有規定,使得這一模型形式簡單又不失本質。不必糾結于“y=22x是否為指數函數”,把重點放在概念的合理性的理解以及體會模型思想。
二、對于培養學生思維習慣的考慮
在學生自主探索的過程中,教師應注意培養學生良好的思維習慣。實際上,選擇底數a的數據的大小和數量,需要對指數函數的性質有預判;從列表到作圖的過程中,都可以感受到指數函數單調性等性質;觀察并歸納性質,既需要特殊到一般的推理模式,也應養成有序進行觀察和歸納的良好的思維習慣。對所歸納的指數函數的性質,應根據學生已有的知識水平或教學要求進行證明或合理的說明。學生不僅學到了數學知識,也初步體驗了研究問題的基本方法。
三、關于設計定位的反思
本節課的教學設計,力圖體現因材施教原則。不同的學情下,教師應采用不同的教學策略。如果學生基礎相對薄弱,問題的提出可以分層次進行。另外,注意通過“你是怎么想的?”“你同意他的意見嗎?為什么”等問話形式,促使學生暴露思維過程。
【高一數學教學計劃】相關文章:
數學高一數學教學計劃10-30
數學高一教學計劃06-22
高一數學的教學計劃04-01
高一數學教學計劃07-26
高一數學教學計劃07-26
新高一數學教學計劃10-31
高一數學教學計劃范文02-28
高一數學教學計劃優秀03-07
高一數學教學計劃總結11-30
高一數學教學計劃(精選11篇)08-30