分數的基本性質教案范文集錦9篇
作為一位兢兢業業的人民教師,有必要進行細致的教案準備工作,借助教案可以更好地組織教學活動。我們應該怎么寫教案呢?以下是小編收集整理的分數的基本性質教案9篇,歡迎閱讀,希望大家能夠喜歡。
分數的基本性質教案 篇1
教學目的
1.使學生理解和掌握分數的基本性質,能應用“性質”解決一些簡單問題.
2.培養學生觀察、分析、思考和抽象、概括的能力.
3.滲透“形式與實質”的辯證唯物主義觀點,使學生受到思想教育.
教學過程
一、談話.
我們已經學習了分數的意義,認識了真分數、假分數和帶分數,掌握了假分數與帶分數、
整數的互化方法.今天我們繼續學習分數的有關知識.
二、導入新課.
(一)教學例1.
出示例1:用分數表示下面各圖中的陰影部分,并比較它們的大小.
1.分別出示每一個圓,讓學生說出表示陰影部分的分數.
(1)把這個圓看做單位1,陰影部分占圓的幾分之幾?
(2)同樣大的圓,陰影部分占圓的幾分之幾?
(3)同樣大的圓,陰影部分用分數表示是多少?
2.觀察比較陰影部分的大小:
(1)從4 幅圖上看,陰影部分的大小怎么樣?(陰影部分的大小相等.)
(2)陰影部分的大小相等,可以用等號連接起來.(把圖上陰影部分畫上等號)
3.分析、推導出表示陰影部分的分數的大小也相等:
(1)4幅圖中陰影部分的大小相等.那么,表示這4 幅圖的4個分數的大小怎么樣呢?
(這4個分數的大小也相等)
(2)它們的大小相等,也可以用等號連接起來(把4個分數用等號連起來).
4.觀察、分析相等的分數之間有什么關系?
(1)觀察 轉化成 , 的分子、分母發生了什么變化?
( 的分子、分母都乘上了2或 的分子、分母都擴大了 2倍.)
(2)觀察
(二)教學例2.
出示例2:比較 的大小.
1.出示圖:我們在三條同樣的數軸上分別表示這三個分數.
2.觀察數軸上三個點的位置,比較三個分數的大小:
從數軸上可以看出:
3.觀察、分析形式不同而大小相等的三個分數之間有什么聯系和變化規律.
(1)這三個分數從形式上看不同,但是它們實質上又都相等.
(教師板書: )
(2)你們分析一下, 、 各用什么樣的方法就都可以轉化成 了呢?
三、抽象概括出分數的基本性質.
1.觀察前面兩道例題,你們從中發現了什么變化規律?
“分數的分子分母都乘上或都除以相同的數(零除外),分數的大小不變.”(板書)
2.為什么要“零除外”?
3.教師小結:這就是今天這節課我們學習的內容:“分數的基本性質”
(板書:“基本性質”)
4.誰再說一遍什么叫分數的基本性質?
教師板書字母公式:
四、應用分數基本性質解決實際問題.
1.請同學們回憶,分數的基本性質和我們以前學過的哪一個知識相類似?
(和除法中商不變的性質相類似.)
(1)商不變的性質是什么?
(除法中,被除數和除數都乘上或都除以相同的數(零除外),商的大小不變.)
(2)應用商不變的.性質可以進行除法簡便運算,可以解決小數除法的運算.
2.分數基本性質的應用:
我們學習分數的基本性質目的是加深對分數的認識,更主要的是應用這一知識去解
決一些有關分數的問題.
3.教學例3.
例3 把 和 化成分母是12而大小不變的分數.
板書:
教師提問:
(1) ?為什么?依據什么道理?
( ,因為分母2乘上6等于12,要使分數的大小不變,分子1也要乘上6.所以, )
(2)這個“6”是怎么想出來的?
(這樣想:2×?=12,2ד6”=12,也可以看12是2的幾倍:12÷2=6,那么分子1也擴大6倍)
(3) ?為什么?依據的什么道理?
( ,因為分母24除以2等于12,要使分數的大小不變,分子10也得除以2,所以, )
(4)這個“2”是怎么想出來的?
(這樣想:24÷?=12,24÷“2”=12.也可以想24是12的2倍,那么分子10也應是新分子的2倍,所以新的分子應是10÷2=5)
五、課堂練習.
1.把下面各分數化成分母是60,而大小不變的分數.
2.把下面的分數化成分子是1,而大小不變的分數.
3.在( )里填上適當的數.
4. 的分子增加2,要使分數的大小不變,分母應該增加幾?你是怎樣想的?
5.請同學們想出與 相等的分數.
規律:這個分數的值是 ,然后只要按自然數的順序說出分子是1、2、3、4、……分母是分子的4倍為:4、8、12、16……無數個.
六、課堂總結.
今天這節課我們學習了什么知識?懂得了一個什么道理?分數的基本性質是什么?這是學習分數四則運算的基礎,一定要掌握好.
七、課后作業.
1.指出下面每組中的兩個分數是相等的還是不相等的.
2.在下面的括號里填上適當的數.
分數的基本性質教案 篇2
教學內容:省編義務教材第十冊第91—93頁例1、例2。
教學目標:
1、體驗分數基本性質的探究過程,建構分數基本性質的意義內涵。
2、溝通分數的基本性質和商不變性質的內在聯系,實現新知化歸舊知,并與后面約分和通分的學習作好前期孕伏。
3、通過猜想、驗證、得出結論這充分自主的數學活動,促進學生學習經驗的不斷積累。
課前準備:
課件,學具袋一個(線段圖紙、長方形、繩子)、探究紙一張
教學過程:
1.創設情境,作好鋪墊
出示四分之二后說:老師的信封里有一道算式,這道算式和這個分數的值相等,你們猜這是一道怎樣的算式?(除法算式。)你能具體猜出是怎樣一道除法算式。(2÷4)
為什么你會猜是一道除法算式?(分數與除法有密切的關系)
除法與分數有什么樣的關系?
(黑板上出示:被除數÷除數=)
根據2÷4這道除法算式,每人都試著說一道與它相等的除法算式。(根據學生板書:1÷23÷64÷85÷10100÷……)
為什么你認為100÷與2÷4的商是一樣的?(2和4同時乘以50商不變,這是根據商不變性質)
什么是商不變性質?(出示:被除數和除數同時乘以或除以相同的數(0除外),商不變。)
2、遷移猜想,引疑激思
分數與除法有這樣的關系,除法中有商不變性質,那你們猜分數中有可能存在著類似的性質嗎?(有)你能具體說一說?
交流得出:分子和分母同時乘以或除以相同的數(0除外),分數的大小不變。
3、自主探究,驗證猜想
也許你們的猜想是正確的,科學家的發現往往也是從猜想開始的,但是只有通過驗證得到的結論才是科學的,這節課我們也學著來做一名小數學家。
(1)初步驗證
①出示:探究報告單,讓學生讀要求:
a.同桌合作:兩人各寫一個分數,將它的分子、分母同時乘以或除以一個相同的數,算出新的分數。
b.選擇合理的方法驗證所前后兩個分數是否相等。
c.填寫好探究報告單。
選擇探究的
分 數
分子和分母同時乘以或除以
一個相同的數
得到的
分 數
選擇的分數與得到的分數是否相等
相等( ) 不相等( )
猜想是否成立
成立( ) 不成立( )
選擇的分數與得到的`分數是否相等相等()不相等()
猜想是否成立成立()不成立()
*:驗證方法可用折紙、畫線段圖、計算、實物……
②學生合作進行探究。
③全班交流:
a、同桌一起上來,拿好探究報告單及驗證材料等。
b、兩人合作,一人講解、一人驗證演示。
c、得到結論:
(交流2-3組后)問全班同學:你們得到怎樣的結論?(一致通過)
剛才我們通過集體努力用不同的方法、不同的分數驗證了我們的猜想是成立的。這就是分數的基本性質,板書:分數的基本性質。(齊讀)
4、議論爭辯,頓悟創新
讀一讀分數的基本性質,你認為哪些字詞是比較重要的。這里的“相同的數”指的是什么數?為什么要“0除外”?
5、訓練技能,激勵發展
剛才我們通過自己的猜想、驗證得出的這條規律,學習了分數的基本性質,到底有什么作用呢?讓我們一起來體會一下。
(1)練習明目的
根據分數的基本性質,填空。
1/2=()/8=5/()=()/6=7/()
采取師生對數的游戲形式進行,如先由教師出分子,再讓學生對出分母,也可以先由學生出分母,再讓教師對出分子。
(2)慧眼辯是非
(3)變式練思維
把下面每組中的異分母分數化成同分母分數。
A、3/4,4/7B、5/6,4/9C、3/5,5/8
分數的分母相同了,有什么作用?揭示學習分數的基本性質的重要性,鼓勵學生學好、用好。
(4)競賽促智慧
①在1—9九個數字中任選一些數字組成大小相等的分數。
可以有:1/2=3/6=4/81/3=2/62/3=4/6這三組。
并讓學生繼續往下說,從而得出:任何一個分數與之相等的分數有無數個。
②出示:1/a=7/b(說明:a、b都不是0。)
搶答:a=2、a=3、a=6、b=28、b=56時a或b的值。
連貫口答:a=1、2、3、4、5……時b的值。(滲透正比例)
討論:a、b之間的關系是怎樣的?為什么會存在這樣的關系?依據是什么?
6、回顧,掌握方法
今天這節課我們學習的分數的基本性質,回憶一下我們是怎樣學習的?
學生可能會回答:
生1:我們是根據“商不變的性質”來學習“分數的基本性質”的。
生2:我們是通過猜測的方法學的。
生3:我們還用驗證的方法學習。
……
結果語:是的,這節課,我們利用除法和分數的關系以及商不變性質,猜想出分數的基本性質,并且進行了驗證與運用,其實數學知識都是相互聯系的,學習數學就要學會利用已有知識,去學習新的知識,這就是學習數學的一把金鑰匙。老師把這把金鑰匙送給每一位同學。
分數的基本性質教案 篇3
教學內容:教科書第60~61頁,例1、例2、
練一練,練習十一第1~3題。
教學目標:
1、使學生經歷探索分數基本性質的過程,初步理解分數的基本性質。
2、使學生能運用分數的基本性質,把一個分數化成指定分母或分子而大小不變的分數。
3、使學生在觀察、操作、思考和交流等活動中,培養分析、綜合和抽象,概括的能力,體現數學學習的樂趣。
教學重點:讓學生在探索中理解分數的基本性質。
教學過程:
一、導入新課
1、我們已經學習了分數的有關知識,這節課在已經掌握的知識基礎上繼續學習。
2、出示例1圖。
你能看圖寫出哪些分數?你是怎樣想的?說出自己的想法。
二、教學新課
1、教學例1。
(1)這四個分數,為什么分母不同呢?前兩個分數的分子為什么都是1?
(2)你其中哪幾個分數是相等的'嗎?你是怎么知道這三個分數相等的?
(3)演示驗證。
2、教學例2。
(1)取出正方形紙,先對折,用涂色部分表示它的1/2。學生操作活動。
(2)你能通過繼續對折,找出和1/2相等的其它分數嗎?學生操作活動。交流匯報。對折后,正方形被平均分成了多少份?涂色部分有多少份,可以用什么分數表示?(板書)
(3)得到的這些分數與1/2相等嗎?能不能再寫一些與1/2相等的數?
(4)觀察每個等式中的兩個分數,它們的分子、分母是怎樣變化的?觀察、思考,試著完成填空。在小組中說說你有什么發現?
(5)小結。分數的分子和分母同時乘或除以相同的數(0除外),分數的大小不變,這是分數的基本性質。板書課題:分數的基本性質。
(6)為什么要“0”除外呢?
(7)你能根據分數的基本性質,寫出一組相等的分數嗎?學生嘗試完成。
(8)根據分數和除法的關系,你能用整數除法中商不變的規律來說明分數的基本性質嗎?在小組中說一說。
3、完成練一練。
(1)完成第1題。涂色表示已知分數,再在右圖中涂出相等部分。說說怎么想的?
(2)完成第1題。獨立完成,匯報想法。5到15乘了幾?1怎么辦?先看哪個數?(分子9)9到1除以幾?分母18怎么辦?
三、鞏固練習
1、完成練習十一第1題。平均分成了多少份?表示多少份?涂色表示。涂色部分還表示幾分之幾?
2、完成第2題。獨立完成,交流想法。
四、課題總結
今天有了什么收獲?你認為學習了分數的基本性質有什么作用?在什么時候可能會用到它?
分數的基本性質教案 篇4
這節課,戴老師教師教態自然、語言清晰、數學語言表述準確。著重培養了學生通過動手操作的活動來讓學生主動探究分數的基本性質,掌握分數的基本性質在生活中的實際應用,同時培養了學生積極參與,團結合作,主動探索,引導觀察鈫捬罷夜媛桑發現規律,我覺得這是一堂充滿生命活力的課堂,能促進學生全面發展的課堂,體現新課標理念的課堂,從中我得到了一些鮮活的經驗和有益的啟示。具體概括以下幾點?
一、教學思路清晰,目標明確,重難點突出。
教師根據教學內容,因材施教地制定了教學思路。這節課以鈥湸瓷棖榫車既胄驢沃傅嘉探索,整個教學思路清晰。這節課戴老師突出培養學生動手操作,主動探究的訓練,通過用三張同樣大的長形紙折一張的、涂色等活動來探索分數分子、分母的變化規律,從而讓學生發現規律,突出重難點的內容,整個教學做到詳略得當,重難點把握準確。這樣設計符合學生年齡特點和認知規律,體現了以學生為主體的學習過程,培養了學生的學習能力?
二、創設情境,重視操作活動,發揮主體作用。
老師能創造機會,讓學生各種感官參與學習,把學生推到主體地位。讓學生獲得豐富感性認識,使抽象知識具體化、形象化。引導學生比較觀察三幅圖的.異同之處,分數的分子分母的變化過程,從而證實變化的規律,整個操作過程層次分明,通過折涂,學生動手、動腦、動口,人人參與學習過程,不是操作而操作,而是把操作,理解概念,讓學生觀察三個圖形來說明概念,降低了難度。通過操作,讓學生既學得高興又充分理解知識。形象直觀地推導了分數的基本性質的概念,這樣概念形成過程十分清晰,充分培養了學生自主探索的能力,把被動地接受知識變為主動地獲取知識,達到教學目的。
三、練習設計具有層次性,開放性。
由淺入深由易到難的設計,既使學生牢固的掌握了所學的知識,鞏固了本節課的基礎知識,又訓練了學生的思維。激發了學生的學習興趣。
分數的基本性質教案 篇5
一、 教材
根據課程標準的要求,基于對教學內容的把握,本課時我確定的教學目標為:
1.理解和掌握分數的基本性質,并會應用分數的基本性質把不同分母的分數化成分母相同而大小不變的分數。
2.通過猜想、驗證、歸納、總結等活動,經歷分數的基本性質的探究過程,體會舉具體事例、數形結合的思考方法,感受抽象、推理的基本數學思想。
3.在自主探究與合作交流的過程中,感受數學知識之間的聯系,激發學生探究學習的興趣。我確定本目標的依據有三點:
一是基于對課程標準的理解。
《義務教育數學課程標準(20xx年版)》在學段目標的第二學段指出學生要“在觀察、實驗、猜想、驗證等活動中,發展合情推理能力,能進行有條理的思考,能比較清楚地表達自己的思考過程”。
二是基于對教材的認識。
《分數的基本性質》是在學生學習了分數的意義、分數與除法的關系、商不變性質等知識的基礎上進行教學的,它是以后學習約分、通分的依據,而約分和通分則是分數四則混合運算的重要基礎,因此,理解分數的基本性質顯得尤為重要。
三是基于對學情的認識。
作為舊課新上,如何讓學生在重新學習的過程中對學習活動任然保持濃厚興趣,從探究活動中得到新的發展,上出數學味,上出新意,我在思考。本節課常規的是創設情境,在情景中提煉出等式,最終形成性質。因此在教學時,我沒有從具體的情境入手,而是從思考一連串的問題開始,通過實驗、猜想、驗證、結論,從等式的驗證上升到規律的發現和歸納,經歷定律由特殊到一般的歸納推理過程,在這個過程中積累數學經驗、滲透數學思想、掌握數學方法。
據此,
我將教學重點確定為:通過猜想、驗證、歸納、總結等活動,讓學生經歷分數的基本性質的探究過程。教學難點確定:理解和掌握分數的基本性質。
二、教法
課程標準指出教師要關注已有的知識經驗及認知水平,發揮組織者、引導者、合作者的作用。本節課我綜合采用了引導發現法、啟發式教學法,直觀演示法,組織學生經歷實驗、猜測、驗證、得出結論的過程。
三、說學法
學生是學習的主體,學生的學習活動應該是生動的、活潑的、富有個性的,因此,在本節課教學中,我主要采用觀察發現法、動手操作法、舉例驗證法,引導學生靜心傾聽、認真操作、積極思考、大膽表達,通過動手實踐、自主探究、合作交流等多種方式獲得廣泛的數學活動經驗。
四、說教學過程
本著讓學生
“主動參與、樂于探究、學有所得”的理念,結合五年級學生的認知水平和年齡特點,結合教材的編排意圖和學情特點,我設計了如下教學環節:1. 聯系舊知,質疑引思。 2.自主操作,驗證猜想 3.知識應用,鞏固提高4.回顧總結,完善認知。
環節一:聯系舊知,質疑引思。
“疑是思之始,學之端。”思考這樣一連串的問題,目的是喚醒學生已有的.知識經驗;迅速地點燃孩子們求知欲望;引發學生的數學思考,為主動探究新知識積聚動力。
環節二:操作體驗,概括規律
1.觀察發現,提出猜想。
通過找與1/2相等的分數,思考證明方法,觀察等式,發現規律,于是提出猜想
2.舉例操作,驗證猜想。
課標指出“學生應當有足夠的時間和空間經歷觀察、實驗、猜測、推理、驗證等活動的過程”。本節課驗證環節,將“分子分母怎樣變才使得分數的大小不變”設定為研究的關鍵點,然后圍繞這一關鍵點讓學生展開了操作、感悟、分析、推理等一系列的數學活動,引導學生通過比較全面的大量的例子來驗證結論,在觀察、實驗、猜測、驗證的活動中發展合情推理能力。讓學生試著用數學的思維去思考,體驗如何運用新舊知識間的聯系和遷移去分析和解決問題,培養學生好學善思的良好品質。
3.概括性質,深化理解
通過觀察算式,經歷由特殊到一般的歸納推理,發現分數的基本性質。
4.運用規律,完成例2
嘗試運用發現的規律,解決問題。
環節三:知識應用,鞏固提高
在有層次的練習過程中,形成技能,發展學生的智力,達成本節課的教學目標,突出重點,突破難點。本節課,我設計了兩個層次的練習。一是點對點的基礎練習,二是靈活運用所學知識解決生活中實際問題。
環節四:回顧總結,完善認知
通過回顧,梳理所學的知識,提煉數學方法,聯系新舊知識,使學生的認知結構得到補充和完善。
有人說的好,教育是一門永無止境的藝術,我知道這節課還有很多不足,懇切的希望各位能給予我更多的寶貴建議,有了你們的幫助我一定收獲更多,成長更快。
分數的基本性質教案 篇6
教學目標
1、進一步理解分數基本性質的意義,掌握約分的方法。
2、促進學生初步形成約分的一般技能技巧,約分(約成最簡分數)的正確率90%。
教學重難點約成最簡分數
教學準備:分數卡片口算卡片
教學過程
一、自主回顧
回顧一下對約分的理解情況
突出三點:用分子分母的公因數同時去除;約分的形式;約成最簡分數。
師:什么是最簡分數?
說一說。
二、鞏固練習
師分數卡片判斷
1、找朋友:找出和相等的分數。(七個小矮人身上的分數分別是下列分數)
你是怎樣尋到的?說說自己的理由好么?
2、能用不同的'分數表示下面各題的商嗎?
練習十一第8題
師:我們在剛剛學習分數和除法的關系時,只會用表示2÷8,現在我們還可以用來表示。看,我們的進步啊,這就是學習的魅力。
師:你能寫出不同的除法算式嗎?
=()÷()=()÷()
你能說出幾個除法的算式?
這些算式之間有什么聯系?
3、快樂學習超市
超市畫面快樂套餐1快樂套餐2
快樂套餐1:比一比○○0.4
計算并化簡+=-=
在()填上最簡分數20分=()時
快樂套餐2、3同上。
(分組練習小組代表匯報整合了練習十一10至14題)
4、集中練習
把0.5化成分數問問自己這個分數是最簡分數嗎?你會把它化成最簡分數嗎?
分母是10的最簡分數有幾個?
請你提出一個類似的問題。
課堂作業
練習十一第9題,12、13、14題各自選2個
課后練習:完成練習冊上的相應練習。
分數的基本性質教案 篇7
教學目標 :
1、理解分數的基本性質,并了解它與除法中商不變的規律之間的聯系。
2、理解和掌握分數的基本性質。
3、培養學生觀察、理解、獻魈驕考扒ㄒ頗芰Α?/SPAN>
4、較好實現知識教育與思想教育的有效結合。
教學重點 :理解和掌握分數的基本性質。
教學難點 :能熟練、靈活地運用分數的基本性質。
教具準備 :“分數基本性質”課件,正方形紙片,彩色粉筆。
教學過程:
一、巧設伏筆、導入新課。
1、出示課件:120÷30的商是多少?
被除數和除都擴大3倍,商是多少?
被除數和除數都縮小10倍呢?(出示后學生回答,課件顯示答案)
2、在下面□里填上合適的數。
1÷2=(1×5)÷(2×□)
=(1÷□)÷(2÷4)
①想一想,你是根據什么填上面的數的?(生口答)
(課件:商不變的性質)
②商不變的性質是什么?(生口答)
③除法與分數之間有什么關系?
生答,師板書:被除數÷除數=被除數/除數
二、討論探究,學習新知。
1、課件出示:1÷2= (怎么寫)
①1/2與( )相等?你能想出哪些數?有辦法怎么讓它們相等嗎?
讓生合作探討。
②生出示答案:1/2=2/4=4/8……
有選擇填入上數。
2、引導學生證明它們相等。
①出課件:出示1個長方體,平均分成2份,得1/2,平均分成4份,得2/4……。
(課件演示)
上述演示讓學生感知后,問你發現了什么?(生討論)
②再逆向思考,觀察板書和課件。
問你又發現了什么?(生討論)
得到:(板書)分數的分子和分母同時乘上或者除以相同的數,分數的大小不變。
3、驗證、補充、強調
①出示2/5=2×2/5=4/5,對嗎?(驗證分數的基本性質),為什么?強調“同時”(在黑板板書上用彩筆勾劃強調)。
②出示3/4=3×3/4×4=9/16,對嗎?為什么?強調“相同的數”。
③右邊列式行嗎?為什么?3/4=3×0/4×0=?補充:(0除外)板書,并出示課件補充。
④歸納出上述板書為“分數的基本性質”(課題)。
4、信息反饋、糾正、鞏固。
①判斷(出示課件)
A、分數的分子,分母都乘上或除以相同的數,分數的大小不變。
B、把15/20的分子縮小5倍,分母也縮小5倍,分數的大小不變。
C、3/4的分子乘上3,分母除以3,分數的`大小不變。
D、10/24=10÷2/24÷2=10×3/24×3 ( )
完成后,強調重點,加以鞏固。
②完成課本108頁例2(學生嘗試練習)
強調運用了什么性質?課件:“分數的基本性質”醒目強調。
三、實踐練習,信息綜合
1、練一練
①3/5=3×( )/5×( )=9/( )
②7/8=( )/48
③4÷18=( )/( )=4×5/18×( )=2/( )
2、練習二十二1—3題。
四、課堂總結、整體感知。
(在信息綜合后,重點選擇性小結,形成整體),這節課我們學習了什么內容?可以應用在什么地方?這與我們學習過的什么性質有聯系?
五、發散鞏固、自主選擇。
想一想:(選擇一道你喜歡的題做)
課件:①與1/2相等的分數有多少個?想象一下,把手中正方形的紙無限地平分下去,可得到多少個與1/2相等的分數。
②9/24和20/32哪能一個數大一些,你能講出判斷的依據嗎
分數的基本性質教案 篇8
教學目的:
1、理解分數的基本性質;
2、初步掌握分數性質的應用;
3、培養學生觀察——探索——抽象——概括的能力;
4、滲透事物是相互聯系、發展變化的辯證唯物主義觀點。
教學重點:
從相等的分數中看出變與不變,觀察、發現、概括其中的規律。
教學難點:
形成對分數的基本性質的統一認知。
教學準備:多媒體,自制演示教具。
教學過程:
一、激趣引新:
1、有位老爺爺把一塊地分給三個兒子。老大分到了這塊地的1/3,老二分到這塊地的2/6,老三分到這塊地的3/9。老大、老二覺得自己很吃虧,于是三人就大吵起來。剛好阿凡提路過,問清爭吵的原因后,哈哈的笑起來,給他們講了幾句話,三兄弟就停止了爭吵。你知道阿凡提為什么會笑?他對三兄弟說了那些話?你想知道嗎?這節課我們就來解決這個問題。
2、在下面的()中填上合適的數。
1÷2=(1×5)÷(2×())=(1÷())÷(2÷4)
同學們現在已經能用分數的知識來解決問題了。
二、啟發引導,探索新知。
1、下面是六年級三個班的同學到三塊同樣大小面積的正方形地里去種樹,哪個班種植的面積大一些呢?
通過圖形的平移、旋轉等方法看出三個班種植面積一樣大。
2.引導觀察得出結論。
(1)通過拼圖得到1/2=2/4=4/8
(2)引導觀察、比較,提出問題:分子,分母都不相同,它們的大小為什么相同呢?
(3)引導思考探索變化規律:
從左往右看:1/2=1×2/2×2=2/4=2×2/4×2=4/8
反過來看:4/8=4÷2/8÷2=2/4=2÷2/4÷2=1/2
3.共同討論,引導學生抽象概括出分數的基本性質:
(1)怎么做能使分數的分子和分母發生變化,而分數的大小都不變呢?
(2)變化時同時乘或除以小數可以嗎?
(3)0可以嗎?3/4=3×0/4×0=?(分數的分母不能為0,在除法里0不能作除數,分子和分母都乘或除以相同的數,這個數不能是0。)
歸納分數基本性質:分數的分子和分母都乘或除以相同的數(0除外)分數的大小不變。
4.學習分數的基本性質以后,感覺過去我們學過類似的性質是什么呢?(商不變的性質)
(1)練習在□中填上合適的數
1÷2=(1×5)÷(2×□)=(1×□)÷(1×4)
(2)你能把1÷2這個除法算式改寫成分數形式?
你能用今天所學的知識解決老爺爺分地的問題嗎?(學生交流、匯報)
5.組織練習
(1)判斷:
1/5=1/5×3=1/5()
5/6=5×2/6×3=10/18()
8/12=8×4/12÷4=32/3()
2/5=2+2/5+2=4/7()
3/4=3÷0.5/4÷0.5()
分數的分子和分母都乘或除以相同的數,分數的大小不變。()
(2)畫一畫、填一填
(3)填空
1/2=1×()/2×()=6/()
10/24=10○()/24○()=()/12
15/60=()/203/()=9/12
6/18=()/()=()/()(有多少種填法)
6.通過練習在此性質中哪些是關鍵詞?
7.鞏固練習(選擇你喜歡的.一題來做)
(1)與1/2相等的分數有多少個?想象一下把手中正方形的紙無限地平分下去,可得到多少個與1/2相等的分數?
(2)9/24和20/32哪一個數大一些,你能講出判斷的依據嗎?
三、課堂總結
今天這節課同學們學了分數的基本性質,有什么感想呢?回家講給爸爸媽媽聽好嗎!同時希望同學們把今天所學的知識運用到今后的學習和生活中去,做一個生活的有心人。
四、課堂作業:練習十四第1——3題。
板書設計:
分數的基本性質
1/2=1×2/2×2=2/4=2×2/4×2=4/8
分數的分子和分母同時乘以一個不為0的數分數的大小不變
4/8=4÷2/8÷2=2/4=2÷2/4÷2=1/2
分數的分子和分母同時除以一個不為0的數分數的大小不變
綜上所述分數的基本性質是:分數的分子和分母同時乘或除以相同的數(0除外),分數的大小不變。
分數的基本性質教案 篇9
教學目的
1.使學生理解和掌握分數的基本性質.
2.培養學生觀察、思考、動手操作和自學能力.
教學過程
一、導入新課.
故事引入:中秋節,媽媽買了一個大西瓜,分給哥哥這個西瓜的 ,(板書: ).
分給組組這個西瓜的 ,(板書: ).分給弟弟這個西瓜的 ,(板書: ).哥哥、姐姐、弟弟三個人,他們誰吃的西瓜多呢?(學生答案不一)
到底誰回答得對呢?上完這節課你們一定能得到準確的答案.
二、新課.
1.實際操作列等式證實兩組分數,每組分數大小相等.
(1)教師講解:請同學們拿出三個大小相等的圓來,分別用陰影部分表示每個圓的
.(板書: )
(2)教師提問:比較一下陰影部分的大小,結果怎樣?
陰影部分相等,說明這三個分數怎樣?
(隨著學生回答老師將三個分數用“=”連接)
(3)教師拿出畫著三條數軸的小黑板,講:誰能在三條數軸上標出 ?
(4)教師提問:這三個分數在數軸上所表示的長度怎樣?這又說明了什么?
(隨著學生回答老師在三個分數間用“=”連接)
2.初步概括分數基本性質.
(1)觀察兩個等式,每個等式的三個分數什么變了?什么沒變?
(2)同學們從左到右觀察第一個等式,想一下,這三個分數的分子、分母怎樣變化才保證了分數的大小不變.
板書:
(3)誰能用一句話把這個變化規律敘述出來?
板書:分數的.分子、分母都乘上同一個數,分數大小不變.
(4)從左到右觀察第二個等式,這三個分數的分子、分母發生了怎樣的變化,才保證了分數大小不變呢?
板書:
(5)問:誰能用一句話把這個變化規律敘述出來?
誰能用一句話把這兩個變化規律敘述出來?
(板書:或除以)
3.完整分數基本性質.
填空:
教師追問:第三題( )里可以填多少個數?第4題呢?
為什么3、4題( )里可以填無數個數?
( )里填任何數都行嗎?哪個數不行?(板書:零除外)
這里為什么必須“零除外”?
教師小結:我們總結的分數的這個變化規律就是“分數的基本性質.
(板書課題:分數基本性質)
4.深入理解分數基本性質.
教師提問:分數的基本性質里哪幾個詞比較重要?
為什么“都”和“相同”很重要?
為什么“分數大小不變”也很重要?
為什么“零除外”也很重要?
三、課堂練習.
1.用直線把相等的分數連接起來.
2.把下列分數按要求分類.
和 相等的分數:
和 相等的分數:
3.判斷下列各題的對錯,并說明理由.
4.填空并說出理由.
5.集體練習.
四、照應課前談話.
問:現在誰知道哥哥、姐姐、弟弟三個人,誰吃的西瓜多呢?
板書:
五、課堂小結.
這節課你有什么收獲?
六、布置作業.
1.指出下面每組中的兩個分數是相等的還是不相等的.
2.在下面的括號里填上適當的數.
【分數的基本性質教案】相關文章:
分數的基本性質教案01-20
分數的基本性質教案08-06
分數的基本性質教案(精選10篇)10-21
精選分數的基本性質教案17篇04-03
【精品】分數的基本性質教案10篇04-14
分數的基本性質教案匯編5篇04-05
分數的基本性質教案匯總7篇04-06
分數的基本性質教案(通用10篇)04-26
【推薦】分數的基本性質教案3篇04-05
分數的基本性質教案模板5篇04-07