精選平行四邊形教案范文集合5篇
作為一名教學工作者,編寫教案是必不可少的,教案是教材及大綱與課堂教學的紐帶和橋梁。教案應該怎么寫才好呢?以下是小編為大家整理的平行四邊形教案5篇,供大家參考借鑒,希望可以幫助到有需要的朋友。
平行四邊形教案 篇1
教學目標
1、使學生在理解的基礎上掌握平行四邊形面積的計算公式,并會運用公式正確地計算平行四邊形的面積。
2.通過操作、觀察、比較,發展學生的空間觀念,培養學生運用轉化的思考方法解決問題的能力和邏輯思維能力。
3.對學生進行辯詐唯物主義觀點的啟蒙教育。
教學重點
理解公式并正確計算平行四邊形的面積。
教學難點
理解平行四邊形面積公式的推導過程。
教學過程
一、復習引入
1.拿出事先準備好的長方形和平行四邊形。量出它的長和寬(平行四邊形量出底和高)。
2.觀察老師出示的幾個平行四邊形,指出它的底和高。
3.教師出示一個長方形和一個平行四邊形。
猜測:
哪一個圖形面積比較大?大多少平方厘米呢?
師:要想我們準確的答案,就要用到今天所學的知識--平行四邊形面積的計算(板書課題)
二、指導探究
1.數方格方法
。1)小組合作討論:
a.圖上標的厘米表示什么?每個小方格表示1平方厘米為什么?
b.長方形的長是多少厘米?寬是多少厘米?面積是多少平方厘米?
c.用數方格的方法,求出平行四邊形的面積?(不滿一格的,都按半格計算)
d.比較平行四邊形的底和長方形的長,再比較平行四邊形的高和長方形的寬,你發現了什么?
。2)集體訂正
(3)請同學評價一下用數方格的方法求平行四邊形的面積。
。闊,有局限性)
2.探索平行四邊形面積的計算公式。
(1)教師講話:不數方格怎樣能夠計算平行四邊形的面積呢?想一想,如果我們把平行四邊形轉化成我們過去學過的圖形,就可以根據已學過的面積公式計算出它的面積了,轉化成什么圖形,怎樣轉化呢?請大家拿出手里的學具試試看。
。2)學生動手剪拼(可以小組合作),并向周圍同學說一說是怎樣轉化的。
。3)同學到前面演示轉化的方法。
(4)教師演示課件并組織學生討論:
①平行四邊形和轉化后的長方形有什么關系?
、谠鯓佑嬎闫叫兴倪呅蔚拿娣e?為什么?
③如果用S表示平行四邊形的面積,用a表示平行四邊形的'底,用n表示平行四邊形的高,那么平行四邊形面積的字母公式是什么?
3、應用
例1一塊平行四邊形鋼板,它的面積是多少?(得數保留整數)
4.83.517(平方米)
答:它的面積約是17平方米。
三、質疑小結
今天你學到了哪些知識?怎樣計算平行四邊形面積?
四、鞏固練習
1、列式并計算面積
、俚桌迕祝呃迕,
、诘酌,高米,
、鄣追置,高分米
2、說出下面每個平行四邊形的底和高,計算它們的面積。
3、應用題
有一塊地近似平行四邊形,底是43米,商是20.1米,這塊地的面積約是多少平方米?(得數保留整數)
4、量出你手里平行四邊形學具的底和高,并計算出它的面積。
平行四邊形教案 篇2
教學目標
1、知識目標
。1)使學生掌握平行四邊形的概念,理解兩條平行線間的距離的概念。
。2)掌握平行四邊形的性質定理1、2,并能運用這些知識進行有關的證明或計算.
2、能力目標
。1)通過啟發、引導,讓學生猜想結論,培養學生的觀察能力和猜想能力。
(2)驗證猜想結論,培養學生的論證和邏輯思維能力。
。3)通過開放式教學,培養學生的創新意識和實踐能力。
3、非智力目標
滲透從具體到抽象、化未知為已知的數學思想及事物之間相互轉化的辯證唯物主義觀點.
教學重點、難點
重點:平行四邊形的概念及其性質.
難點:正確理解兩條平行線間的距離的概念和性質定理2的推論。
平行四邊形的概念及性質的靈活運用
教學方法:講解、分析、轉化
教學過程設計
一、利用分類、特殊化的方法引出平行四邊形的概念
1.復習四邊形的知識.
。1)引導學生畫任意凸四邊形,指出它的主要元素——頂點、邊、角、對角線的性質,強調對角線的作用:將四邊形分割化歸為三角形來研究.
。2)將四邊形的邊角按位置關系分為兩類:
教學時應結合圖形,讓學生識別清楚,并注意與三角形中角的對邊、邊的對角及第一章中的鄰角相區別.
2.教師提問:四邊形中的兩組對邊按位置關系分為幾種情況?
引導學生畫圖回答,并出示投影片顯示四邊形與特殊四邊形的關系,如圖4-11.
3.對比引出平行四邊形的概念.
(1)引導學生根據圖4-11,敘述平行四邊形的概念,引出課題.
。2)注意它與梯形的對比,及它與四邊形的特殊與一般的關系:平行四邊形是特殊的四邊形,因此它具有四邊形的一切性質(共性).同時它還具有一般四邊形不具備的特殊性質(個性).
。3)強調定義既是平行四邊形的一個判定方法,同時又是平行四邊形的一個性質.
(4)介紹平行四邊形的符號表示及定義的使用方法:如圖4-12.
、佟逜BCD,∴AD∥BC,AB∥CD.(平行四邊形的定義)
、凇逜D∥BC,AB∥CD,∴四邊形ABCD是平行四邊形.(平行四邊形的定義)
練習1(投影)
如圖4-13,DC∥EF∥AB,DA∥GH∥CB,圖中的平行四邊形共有__個,它們是__.
二、探索平行四邊形的性質并證明
1.探索性質.
啟發學生從平行四邊形的主要元素——邊、角、對角線的位置關系及數量關系入手,來觀察、探索、猜想平行四邊形的特有的性質如下:
。3)對角線
、輰蔷互相平分(性質定理3)
教師注意解釋并強調對角線互相平分的含義及表示方法.
2.利用化歸的方法對性質逐一進行證明.
。1)由平行四邊形的定義及平行線的性質很快證出性質①,④,③.
。2)啟發學生添加一條或兩條對角線,將四邊形分割、化歸為三角形;利用全等三角形的知識證出性質②,⑤.
。3)寫出證明過程.
3.關于“兩條平行線間的平行線段和距離”的教學.
。1)利用性質定理2
導出推論:夾在兩條平行線間的平行線段相等.
①提問:在圖4-14中,l1∥l2,AB∥CD,那么AB,CD的數量有何關系?引導學生根據平行四邊形的定義和性質進行證明.
、谝龑W生用語言簡練地敘述圖4-14所反映的幾何命題,并強調它的作用.證題時可節省步驟,省掉判定平行四邊形這一步,直接得到夾在兩條平行線間的平行線段相等.
③強調推論中的條件:“夾”、“平行線間”、“平行線段”的含義和重要性,并做一組辨析練習.
練習2
(投影)如圖4-15,判斷下列幾組圖形能否體現推論所代表的含義.
。2)根據圖4-15(d)引出兩條平行線的距離的概念,并通過練習區別三個距離.
練習3
在圖4-15(d)中,
、冱cA與點C的距離是線段__的長;
②點A到直線l2的距離是線段__的長;
、蹆蓷l平行線l1與l2的距離是線段__或__的長;
④由推論可得:兩條平行線間的距離__.
三、平行四邊形的定義及性質的應用
1.計算.
例1填空.
。1)在ABCD中,AB=a,BC=b,∠A=50°,則ABCD的周長為__,∠B=__,∠C=__,∠D=__;
。2)在ABCD中:①∠A∶∠B=5∶4,則∠A=__;②∠A+∠C=200°,則∠A=___,∠B=__;
。3)已知平行四邊形周長為54,兩鄰邊之比為4∶5,則這兩邊長度分別為__;
。4)已知ABCD對角線交點為O,AC=24mm,BD=26mm,①若AD=22mm,則△OBC周長為__;②若AB⊥AC,則△OBC比△OAB的周長大___;
(5)在ABCD中,AB=8cm,BC=10cm,∠B=30°,SABCD=__;
說明:通過此題讓學生熟悉平行四邊形的性質,會用它及方程的思想進行計算,并復習平行四邊形的面積公式.
2.證明.
例2 已知:如圖4-16,ABCD中,E,F分別為BC,AD上的點,AE∥CF.求證(1)BE=DF;(2)EF過BD的中點.
分析:
。1)盡量利用平行四邊形的定義和性質,避免證三角形全等.
。2)考慮特殊化情形.在ABCD中,若E,F在BC,AD上運動到如下位置:AE⊥BC于E,CF⊥AD于F,求證BE=DF.在題目的變化與聯系中靈活選用性質來解題.
例3已知:如圖4-17,A′B′∥BA,B′C′∥CB,C′A′∥AC.求證:(1)∠ABC=∠B′,∠CAB=∠A′,∠BCA=∠C′;(2)△ABC的頂點分別是△B′C′A′各邊的中點.
著重引導學生先分解基本圖形,圖中有3個平行四邊形:C′BCA,ABCB′,ABA′C,分別利用對角相等和對邊相等的性質使問題得到證明.對于第(2)問也可用“夾在兩條平行線間的平行線段相等”來證明.
例4 已知:如圖4-18(a),ABCD的對角線AC,BD相交于點O,EF過點O與AB,CD分別相交于點E,F.求證:OE=OF,AE=CF,BE=DF.
分析:
。1)引導學生證明以OE,OF為邊的兩個三角形全等,如證△AOE≌△COF或證△BOE≌△DOF.
。2)根據學生實際,對圖4-18(a)可作適當引申,如圖4-18(b),(c),(d),并歸納結論如下:過平行四邊形對角線的交點作直線交對邊或對邊的延長線,所得對應線段相等.
。3)圖4-18是一組重要的基本圖形,熟悉它的性質對解答復雜問題是很有幫助的.
3.供選用例題.
(1)從平行四邊形的一個銳角頂點作平行四邊形的兩條高線.如果這兩條高線的'夾角為135°,則這個平行四邊形相鄰兩內角的度數為__;若高線分別為1cm和2cm,則平行四邊形的周長為__,面積為___;若兩條高線夾角為120°呢?
。2)如圖4-19,在△ABC中,AD平分∠BAC,過D作DE∥AC交AB于E,過E作EF∥DC交AC于F.求證:AE=FC.
。3)如圖4-20,在ABCD中,AD=2AB,將AB向兩方延長,使AE=BF=AB.求證:EC⊥FD.
四、師生共同小結
1.平行四邊形與四邊形的關系.
2.學習了平行四邊形哪些方面的性質?
3.兩條平行線的距離是怎樣定義的?有什么性質?
五、作業
課本第143頁第2,3,4,5,6題.
課堂教學設計說明
本教學設計需2課時完成.
這節內容分2課時.第1課時在復習四邊形的有關知識的基礎上,用對比的方式引入平行四邊形的概念,充分體現了平行四邊形在四邊形體系中的地位,然后,教師應啟發學生從邊、角、對角線三個方面探索平行四邊形的性質,使知識更加系統,更符合學生的認知規律,而且突出了第1課時的重點,同時更能培養學生主動探求知識的精神和思維的條理性.第2課時重點應用平行四邊形的定義、性質進行計算和證明,教師注意讓學生鞏固基礎知識和基本技能,加強對解題思路的分析,解題思想方法的概括、指導和結論的升華.
平行四邊形及其性質
教學目標
1、知識目標
(1)使學生掌握平行四邊形的概念,理解兩條平行線間的距離的概念。
。2)掌握平行四邊形的性質定理1、2,并能運用這些知識進行有關的證明或計算.
2、能力目標
。1)通過啟發、引導,讓學生猜想結論,培養學生的觀察能力和猜想能力。
。2)驗證猜想結論,培養學生的論證和邏輯思維能力。
。3)通過開放式教學,培養學生的創新意識和實踐能力。
3、非智力目標
滲透從具體到抽象、化未知為已知的數學思想及事物之間相互轉化的辯證唯物主義觀點.
教學重點、難點
重點:平行四邊形的概念及其性質.
難點:正確理解兩條平行線間的距離的概念和性質定理2的推論。
平行四邊形的概念及性質的靈活運用
教學方法:講解、分析、轉化
教學過程設計
一、利用分類、特殊化的方法引出平行四邊形的概念
1.復習四邊形的知識.
(1)引導學生畫任意凸四邊形,指出它的主要元素——頂點、邊、角、對角線的性質,強調對角線的作用:將四邊形分割化歸為三角形來研究.
。2)將四邊形的邊角按位置關系分為兩類:
教學時應結合圖形,讓學生識別清楚,并注意與三角形中角的對邊、邊的對角及第一章中的鄰角相區別.
2.教師提問:四邊形中的兩組對邊按位置關系分為幾種情況?
引導學生畫圖回答,并出示投影片顯示四邊形與特殊四邊形的關系,如圖4-11.
3.對比引出平行四邊形的概念.
(1)引導學生根據圖4-11,敘述平行四邊形的概念,引出課題.
。2)注意它與梯形的對比,及它與四邊形的特殊與一般的關系:平行四邊形是特殊的四邊形,因此它具有四邊形的一切性質(共性).同時它還具有一般四邊形不具備的特殊性質(個性).
。3)強調定義既是平行四邊形的一個判定方法,同時又是平行四邊形的一個性質.
。4)介紹平行四邊形的符號表示及定義的使用方法:如圖4-12.
①∵ABCD,∴AD∥BC,AB∥CD.(平行四邊形的定義)
、凇逜D∥BC,AB∥CD,∴四邊形ABCD是平行四邊形.(平行四邊形的定義)
練習1(投影)
如圖4-13,DC∥EF∥AB,DA∥GH∥CB,圖中的平行四邊形共有__個,它們是__.
二、探索平行四邊形的性質并證明
1.探索性質.
啟發學生從平行四邊形的主要元素——邊、角、對角線的位置關系及數量關系入手,來觀察、探索、猜想平行四邊形的特有的性質如下:
(3)對角線
⑤對角線互相平分(性質定理3)
教師注意解釋并強調對角線互相平分的含義及表示方法.
2.利用化歸的方法對性質逐一進行證明.
。1)由平行四邊形的定義及平行線的性質很快證出性質①,④,③.
(2)啟發學生添加一條或兩條對角線,將四邊形分割、化歸為三角形;利用全等三角形的知識證出性質②,⑤.
。3)寫出證明過程.
3.關于“兩條平行線間的平行線段和距離”的教學.
。1)利用性質定理2
導出推論:夾在兩條平行線間的平行線段相等.
①提問:在圖4-14中,l1∥l2,AB∥CD,那么AB,CD的數量有何關系?引導學生根據平行四邊形的定義和性質進行證明.
、谝龑W生用語言簡練地敘述圖4-14所反映的幾何命題,并強調它的作用.證題時可節省步驟,省掉判定平行四邊形這一步,直接得到夾在兩條平行線間的平行線段相等.
、蹚娬{推論中的條件:“夾”、“平行線間”、“平行線段”的含義和重要性,并做一組辨析練習.
練習2
。ㄍ队埃┤鐖D4-15,判斷下列幾組圖形能否體現推論所代表的含義.
(2)根據圖4-15(d)引出兩條平行線的距離的概念,并通過練習區別三個距離.
練習3
在圖4-15(d)中,
①點A與點C的距離是線段__的長;
②點A到直線l2的距離是線段__的長;
、蹆蓷l平行線l1與l2的距離是線段__或__的長;
、苡赏普摽傻茫簝蓷l平行線間的距離__.
三、平行四邊形的定義及性質的應用
1.計算.
例1填空.
。1)在ABCD中,AB=a,BC=b,∠A=50°,則ABCD的周長為__,∠B=__,∠C=__,∠D=__;
。2)在ABCD中:①∠A∶∠B=5∶4,則∠A=__;②∠A+∠C=200°,則∠A=___,∠B=__;
(3)已知平行四邊形周長為54,兩鄰邊之比為4∶5,則這兩邊長度分別為__;
。4)已知ABCD對角線交點為O,AC=24mm,BD=26mm,①若AD=22mm,則△OBC周長為__;②若AB⊥AC,則△OBC比△OAB的周長大___;
(5)在ABCD中,AB=8cm,BC=10cm,∠B=30°,SABCD=__;
說明:通過此題讓學生熟悉平行四邊形的性質,會用它及方程的思想進行計算,并復習平行四邊形的面積公式.
2.證明.
例2 已知:如圖4-16,ABCD中,E,F分別為BC,AD上的點,AE∥CF.求證(1)BE=DF;(2)EF過BD的中點.
分析:
。1)盡量利用平行四邊形的定義和性質,避免證三角形全等.
。2)考慮特殊化情形.在ABCD中,若E,F在BC,AD上運動到如下位置:AE⊥BC于E,CF⊥AD于F,求證BE=DF.在題目的變化與聯系中靈活選用性質來解題.
例3已知:如圖4-17,A′B′∥BA,B′C′∥CB,C′A′∥AC.求證:(1)∠ABC=∠B′,∠CAB=∠A′,∠BCA=∠C′;(2)△ABC的頂點分別是△B′C′A′各邊的中點.
著重引導學生先分解基本圖形,圖中有3個平行四邊形:C′BCA,ABCB′,ABA′C,分別利用對角相等和對邊相等的性質使問題得到證明.對于第(2)問也可用“夾在兩條平行線間的平行線段相等”來證明.
例4 已知:如圖4-18(a),ABCD的對角線AC,BD相交于點O,EF過點O與AB,CD分別相交于點E,F.求證:OE=OF,AE=CF,BE=DF.
分析:
(1)引導學生證明以OE,OF為邊的兩個三角形全等,如證△AOE≌△COF或證△BOE≌△DOF.
。2)根據學生實際,對圖4-18(a)可作適當引申,如圖4-18(b),(c),(d),并歸納結論如下:過平行四邊形對角線的交點作直線交對邊或對邊的延長線,所得對應線段相等.
。3)圖4-18是一組重要的基本圖形,熟悉它的性質對解答復雜問題是很有幫助的.
3.供選用例題.
。1)從平行四邊形的一個銳角頂點作平行四邊形的兩條高線.如果這兩條高線的夾角為135°,則這個平行四邊形相鄰兩內角的度數為__;若高線分別為1cm和2cm,則平行四邊形的周長為__,面積為___;若兩條高線夾角為120°呢?
。2)如圖4-19,在△ABC中,AD平分∠BAC,過D作DE∥AC交AB于E,過E作EF∥DC交AC于F.求證:AE=FC.
(3)如圖4-20,在ABCD中,AD=2AB,將AB向兩方延長,使AE=BF=AB.求證:EC⊥FD.
四、師生共同小結
1.平行四邊形與四邊形的關系.
2.學習了平行四邊形哪些方面的性質?
3.兩條平行線的距離是怎樣定義的?有什么性質?
五、作業
課本第143頁第2,3,4,5,6題.
課堂教學設計說明
本教學設計需2課時完成.
這節內容分2課時.第1課時在復習四邊形的有關知識的基礎上,用對比的方式引入平行四邊形的概念,充分體現了平行四邊形在四邊形體系中的地位,然后,教師應啟發學生從邊、角、對角線三個方面探索平行四邊形的性質,使知識更加系統,更符合學生的認知規律,而且突出了第1課時的重點,同時更能培養學生主動探求知識的精神和思維的條理性.第2課時重點應用平行四邊形的定義、性質進行計算和證明,教師注意讓學生鞏固基礎知識和基本技能,加強對解題思路的分析,解題思想方法的概括、指導和結論的升華.
平行四邊形教案 篇3
教學目標
知識與能力:
1.運用類比的方法,通過學生的合作探究,得出平行四邊形的判定方法.
2.理解平行四邊形的另一種判定方法,并學會簡單運用.
過程與方法:
1.經歷平行四邊行判別條件的探索過程,在有關活動中發展學生的合情推理意識.
2.在運用平行四邊形的判定方法解決問題的過程中,進一步培養和發展學生的邏輯思維能力和推理論證的表達能力.
情感、態度與價值觀:
通過平行四邊形判別條件的探索,培養學生面對挑戰,勇于克服困難的意志,鼓勵學生大膽嘗試,從中獲得成功的體驗,激發學生的學習熱情.
教學方法 啟發誘導式 教具 三角尺
教學重點 平行四邊形判定方法的探究、運用.
教學難點 對平行四邊形判定方法的'探究以及平行四邊形的性質和判定的綜合運用
教學過程:
第一環節 復習引入:
問題1:
1.平行四邊形的定義是什么?它有什么作用?
2.判定四邊形是平行四邊形的方法有哪些?
。1)兩組對邊分別平行的四邊形是平行四邊形.
。2)一組對邊平行且相等的四邊形是平行四邊形.
(3)兩條對角線互相平分的四邊形是平行四邊形.
第二環節 探索活動
活動:
工具:兩對長度分別相等的木條。
動手:能否在平面內用這四根筆擺成一個平行四邊形?
思考1.1:你能說明你所擺出的四邊形是平行四邊形嗎?
已知:四邊形ABCD中,AD=BC,AB=CD. 試說明四邊形ABCD是平行四邊形.
思考1.2:以上活動事實,能用文字語言表達嗎?
學生以小組為單位,利用課前準備好的學具動手操作、觀察,完成探究活動1,共同得到:
(1)只有將兩兩相等的木條分別作為四邊形的兩組對邊才能得到平行四邊形.
(2)通過觀察、實驗、猜想到:
兩組對邊分別相等的四邊形是平行四邊形.
在此活動中,教師應重點關注:
。1)學生在拼四邊形時,能否將相等兩木條作為四邊形的對邊;
。2)轉動四邊形,改變它的形狀的過程中,能否觀察得到在此過程中它始終是一個平行四邊形;
。3)學生能否通過獨立思考、小組合作得出正確的證明思路.
第三環節 鞏固練習
例1 如圖:在四邊形ABCD中,∠1=∠2,∠3=∠4.四邊形ABCD是平行四邊形嗎?為什么?
八年級數學上冊教案例2 如圖所示,AC=BD=16,AB=CD=EF=15,CE=DF=9,圖中有哪些互相平行的線段?
隨堂練習
1.判斷下列說法是否正確
(1)一組對邊平行且另一組對邊相等的四邊形是平行四邊形 ( )
(2)兩組對角都相等的四邊形是平行四邊形 ( )
(3)一組對邊平行且一組對角相等的四邊形是平行四邊形 ( )
(4)一組對邊平行,一組鄰角互補的四邊形是平行四邊形 ( )
2.有兩條邊相等,并且另外的兩條邊也相等的四邊形一定是平行四邊形嗎?為什么?
3.如圖所示,四個全等的三角形拼成一個大的三角形,找出圖中所有的平行四邊形,并說明理由.
4.如圖:AD是ΔABC的邊BC邊上的中線.
(1)畫圖:延長AD到點E,使DE=AD,連接BE,CE;
(2)判斷四邊形ABEC的形狀,并說明理由.
第四環節 小結:
師生共同小結,主要圍繞下列幾個問題:
。1)判定一個四邊形是平行四邊形的方法有哪幾種?
(2)我們是通過什么方法得出平行四邊形的這幾種判定方法的,這樣的探索過程對你有什么啟發?
。3)平行四邊形判定的應用 集備意見 個案補充
平行四邊形教案 篇4
教學目標
1.能夠從圖中全面感知平行四邊形現象,體會平行四邊形在生活情景中的存在。,
2.通過觀察、操作等活動,認識平行四邊形的一些特征。
3.經歷探索平行四邊形的過程,了解它的基本特征,進一步發展空間觀念。
教學重點
通過觀察、操作等活動,認識平行四邊形的一些特征
教學難點
經歷探索平行四邊形的過程,了解它的'基本特征
教學過程
激發興趣
一、(出示主題圖)
我們已經認識了平行四邊形,請同學們仔細
觀察主題圖,圖中都有些什么物體,這些物體
都反映出一些什么現象?
這些現象正是我們本單元所要研究和學習
的平行四邊形。(板書課題)
仔細觀察
小組活動
探索、感知
探索新知 1.拉一拉。
師:拿出你們準備的長方形木框,用手捏住相對的兩個角,向相反的方向拉動,邊拉動,邊觀察你有什么發現?與原來的長方形有什么相同和不同?
生:可以拉成不一樣的平行四邊形!
師:說明平行四邊形易變形。(板書:易變形)
2.畫一畫,比一比 。
(拉到一定的位置不變)師將拉成的平行四邊形畫在黑板上。學生將拉成的平行四邊形畫在紙上。 觀察平行四邊形,你發現了什么?
生:相對的兩條邊互相平行……
抽生演示測量兩組對邊分別平行。
師課件演示兩組對邊分別平行。
師小結:兩組對邊分別平行平行的四邊形叫做平行四邊形。
3.量一量,填一填,說一說。
師:先給平行四邊形的邊和角編上號。每位同學都用直尺量一量平行四邊形的四條邊,用三角板量一量四個角,然后填表。
長邊 長邊 短邊 短邊 邊 ∠1 ∠2 ∠3 ∠4 角
觀察表格,你有什么發現?
將自己的發現在小組交流,然后討論平行四邊形都有哪些特點?作好記錄。
全班匯報。你們組發現了平行四邊形都有哪些特點?
師:幾組同學的匯報都有哪些相同的地方?你們有嗎?
平行四邊形都有哪些特征?
總結:1.兩組對邊分別相等。2.兩組對角分別相等。
3.四個內角的和是360
學生操作
抽生匯報
先獨立思考,在小組討論。
獨立觀察后,同桌交流。然后全班交流。
學生操作,先拉平行四邊形,再畫。
獨立觀察
小組交流
抽生匯報
學生發言,其余注意傾聽。
獨立思考,匯報。
1組:我們發現左右兩邊的長都是……,上下兩邊的長都是……
一組對角都是……,另一組對角都是……
2組:……
課堂小結
今天這節課我們學習了些什么?你都有哪些收獲?
平行四邊形教案 篇5
教學內容:國標蘇教版數學第八冊P43-45。
教學目標:
1、學生在聯系生活實際和動手操作的過程中認識平行四邊形,發現平行四邊形的基本特征,認識平行四邊形的高。
2、學生在活動中進一步積累認識圖形的學習經驗,學會用不同方法做出一個平行四邊形,會在方格紙上畫平行四邊形,能正確判斷一個平面圖形是不是平行四邊形,能測量或畫出平行四邊形的高。
3、學生感受圖形與生活的聯系,感受平面圖形的學習價值,進一步發展對“空間與圖形”的學習興趣。
教學重點:進一步認識平行四邊形,發現平行四邊形的基本特征,會畫高。
教學難點:引導學生發現平行四邊形的特征。
教學準備:配套多媒體課件。
教學過程:
一、生活導入。
1、(課件出示學校大門關閉和打開的錄象,最后定格成放大的圖片)教師談話:同學們每天都要經過校門進入校園,但是你們注意觀察我們的校門了嗎?從圖片中你們能找到一些平面圖形嗎?根據回答,教師板書:平行四邊形。
2、你們還能找出我們生活中見過的一些平行四邊形嗎?學生回答后,教師課件出示一些生活中的平行四邊形:如活動衣架、風箏、樓梯欄桿等。
3、今天這節課我們一起來進一步研究平行四邊形,相信通過研究,我們將有新的收獲。板書完整課題:認識平行四邊形。
。墼u:《數學課程標準》指出:“學生的數學學習內容應當是現實的、有意義的、富有挑戰性的。”選擇學生熟悉和感興趣的素材,吸引學生的注意力,激發學生主動參與學習活動的熱情,讓學生初步感知平行四邊形。]
二、探究特點。
1、剛才同學們已經能找出生活中的一些平行四邊形了,那我們能不能利用身邊的一些物品,自己來想辦法來制作一個平行四邊形呢?你們可以先看一看材料袋中有哪些材料,再獨立思考一下準備怎么做;如果有困難的可以先看看學具袋中的平行四邊形再操作。
2、大家已經完成了自己的創作,現在請你們和小組的同學交流一下,說說自己的做法和為什么這樣做,然后派代表上來交流。
學生小組交流,教師巡視,并進行一定的輔導。
3、哪個小組派代表上來交流?注意把你的方法展示在投影儀上,然后說說這么做的'理由,其他小組等他們說完后可以進行補充。
(1)方法一:用小棒擺。請你說說你為什么這么做?要注意些什么呢?
(2)方法二:在釘子板上面圍一個平行四邊形。你介紹一下,在圍的時候要注意些什么?怎樣才能做一個平行四邊形?
(3)方法三:在方格紙上畫一個平行四邊形。你能提醒一下大家嗎?應該怎樣才能得到一個平行四邊形?
(4)用直尺畫一個平行四邊形。
……
(評:這個個環節的設計,本著學生為主體的思想,敢于放手,讓學生的多種感官參與學習活動,讓學生在操作中體驗平行四邊形的一些特點;既實現了探究過程開放性,也突出了師生之間、學生之間的多向交流,體現那了學生為本的理念。)
4、剛才我們已經能用多種方法來制作平行四邊形,現在請大家在方格紙上獨立在方格紙上畫一個平行四邊形,想想應該怎么畫?注意些什么?
(評:本環節的設計,通過在方格紙上畫,讓學生再次感知平行四邊形的一些特點,為下面的猜想、驗證和畫高作了鋪墊。)
5、我們已經能夠用不同的方法制作平行四邊形,并且能夠在方格紙上話一個平行四邊形。那么這些大小不同的平行四邊形到底有什么共同特點呢?下面我們一起來研究。
根據你們在制作平行四邊形的時候的體會,你們可以猜想一下:平行四邊形有哪些特點?(友情提示:課件中出示提示:我們可以從平行四邊形的那些方面來猜想它的特征呢?邊?角?)
6、學生小組討論后提問并板書猜想:
對邊可能平行;
對邊可能相等;
對角相等;
……
7、你們真行,有了這么多的猜想,那我們能夠自己想辦法來證明這些猜想是否正確呢?請每個小組先認領一條,時間有多余可以再研究其他的猜想。
學生每小組上臺認領一條猜想,學生分組驗證猜想。
8、經過同學們的努力,我們已經自己驗證了其中一條猜想,現在我們舊來交流一下,其他小組認真聽好,他們的回答是否正確,你覺得怎樣?
9、小組派代表上來交流自己小組的驗證方法,其他小組在其完成后進行評價。
(1) 兩組對邊分別相等:學生介紹可以用對折或用直尺量的方法來驗證對邊相等后,教師用課件直觀展示。
(2) 兩組對邊分別平行:學生匯報的時候如果不一定很完整,教師用課件展示:兩條對邊分別延伸,然后顯示不相交。
(3) 對角相等:學生說出方法后,教師讓學生再自己量一量。
……
最后,教師板書出經過驗證特點:
兩組對邊分別平行并且相等;
對角相等;
內角和是360°
(評:這個環節的設計蘊涵了“猜想-驗證-結論”這樣一個科學的探究方法。給學生提供了充分的自制探索的空間,引導學生先猜測特點,再放手讓學生自己去驗證和交流,使學生在碰撞和交流中最后的出結論。在這個過程中,學生充分展示了自己的思維過程,在交流中與傾聽中把自己的方法與別人的想法進行了比較。)
10、完成“想想做做1”。學生獨立完成后說說理由。
三、認識高、底。
1、出示一張平行四邊形的圖,介紹:這是一個平行四邊形,你能量出平行四邊形兩條紅線間的距離嗎?應該怎么量?把你量的線段畫出來。
學生自己嘗試后交流。
2、老師剛才發現,大家畫的高位置都不一樣,你們想想這是為什么呢?這樣的線段到底有多少條呢?(一組平行線之間的距離處處相等,有無數條。)
說明:從平行四邊形一條邊上的一點到它對邊的垂直線段是平行四邊形的高,這條對邊是平行四邊形的底。
3、你能畫出另一組對邊上的高,并量一量嗎?學生繼續嘗試。
完成后,讓學生指一指:兩次畫的高分別垂直于哪一組對邊。板書:高和一組對邊對應。
4、完成“試一試”:(1)先指一指高垂直于哪條邊;(2)量出每個平行四邊形的底和高各是多少厘米。
5、想想做做5,先指一指平行四邊形的底,再畫出這條底邊上的高,注意畫上直角標記。如果有錯誤,讓學生說說錯在哪里。
(這個環節的設計,通過學生自己去量、去畫,從而很方便得到了平行四邊形的高和底的概念,在的出高和底對應的時候比較巧妙,學生學得輕松、明了。設計的練習也遵循循序漸進的原則,很好地讓學生領悟了高的知識。)
四、練習提高。
1、想想做做1,哪些圖形是平行四邊形,為什么。
2、想想做做2,用2塊、4塊完全一樣的三角尺分別拼成一個平行四邊形,在小組里交流是怎樣拼的。
3、想想做做3,用七巧板中的3塊拼成一個平行四邊形。
出示,你能移動其中的一塊將它改拼成長方形嗎?
4、想想做做4,想把一塊平行四邊形的木板鋸開做成一張盡可能的的長方形桌面,該從哪里鋸開呢?找一張平行四邊形紙試一試。
5、想想做做6,用飲料管作成一個長方形,再拉成平行四邊形,比一比長方形和平行四邊形的相同點和不同點。
(評:在鞏固練習中,注意通過學生動手、動腦來進一步掌握平行四邊形的特點。來年系的層次清楚、逐步提高,學生容易接受,并且注意了引導學生去自主探索、合作交流。)
五、閱讀調查
自主閱讀“你知道嗎?”,說說有什么收獲,再到生活中去找找類似的例子。
六、全課小結
今天我們重點研究了哪種平面圖形?它有什么特點?回想一下,我們通過哪些活動進行研究?
【平行四邊形教案】相關文章:
平行四邊形教案08-27
平行四邊形面積教案02-09
平行四邊形的面積教案01-17
《平行四邊形的面積》教案01-02
《平行四邊形的認識》教案03-15
《平行四邊形的面積》教案06-23
《平行四邊形的認識》教案07-09
平行四邊形的認識教案07-30
精選平行四邊形教案八篇05-22
精選平行四邊形教案20篇10-19