免费无码作爱视频,女厕厕露p撒尿八个少妇,精品人妻av区乱码,国产aⅴ爽av久久久久久

《完全平方公式》教案

時間:2024-07-13 17:04:57 教案 我要投稿

《完全平方公式》教案【必備15篇】

  作為一名辛苦耕耘的教育工作者,時常需要編寫教案,教案有助于學生理解并掌握系統的知識。寫教案需要注意哪些格式呢?下面是小編為大家收集的《完全平方公式》教案,希望能夠幫助到大家。

《完全平方公式》教案【必備15篇】

《完全平方公式》教案1

  教學目標:

  1、經歷探索完全平方公式的過程,并從完全平方公式的推導過程中,培養學生觀察、發現、歸納、概括、猜想等探究創新能力,發展邏輯推理能力和有條理的表達能力。

  2、體會公式的發現和推導過程,理解公式的本質,從不同的層次上理解完全平方公式,并會運用公式進行簡單的計算。

  3、了解完全平方公式的幾何背景,培養學生的數形結合意識。

  4、在學習中使學生體會學習數學的樂趣,培養學習數學的信心,感愛數學的內在美。

  教學重點:

  1、弄清完全平方公式的來源及其結構特點,用自己的語言說明公式及其特點;

  2、會用完全平方公式進行運算。

  教學難點:

  會用完全平方公式進行運算

  教學方法:

  探索討論、歸納總結。

  教學過程:

  一、回顧與思考

  活動內容:復習已學過的平方差公式

  1、平方差公式:(a+b)(a—b)=a2—b2;

  公式的結構特點:左邊是兩個二項式的乘積,即兩數和與這兩數差的積。

  右邊是兩數的平方差。

  2、應用平方差公式的注意事項:弄清在什么情況下才能使用平方差公式。

  二、情境引入

  活動內容:提出問題:

  一塊邊長為a米的正方形實驗田,由于效益比較高,所以要擴大農田,將其邊長增加b米,形成四塊實驗田,以種植不同的新品種(如圖)。

  用不同的形式表示實驗田的總面積,并進行比較。

  三、初識完全平方公式

  活動內容:

  1、通過多項式的乘法法則來驗證(a+b)2=a2+2ab+b2的正確性。并利用兩數和的完全平方公式推導出兩數差的完全平方公式:(a—b)2=a2—2ab+b2。

  2、引導學生利用幾何圖形來驗證兩數差的'完全平方公式。

  3、分析完全平方公式的結構特點,并用語言來描述完全平方公式。

  結構特點:左邊是二項式(兩數和(差))的平方;

  右邊是兩數的平方和加上(減去)這兩數乘積的兩倍。

  語言描述:兩數和(或差)的平方,等于這兩數的平方和加上(或減去)這兩數積的兩倍。

  四、再識完全平方公式

  活動內容:例1用完全平方公式計算:

  (1)(2x?3)2(2)(4x+5y)2(3)(mn?a)2(4)(—1—2x)2(5)(—2x+1)2

  2、總結口訣:首平方,尾平方,兩倍乘積放中央,加減看前方,同加異減。

  五、鞏固練習:

  1、下列各式中哪些可以運用完全平方公式計算。

  1、6完全平方公式:

  一、學習目標

  1、會推導完全平方公式,并能運用公式進行簡單的計算。

  2、了解完全平方公式的幾何背景

  二、學習重點:會用完全平方公式進行運算。

  三、學習難點:理解完全平方公式的結構特征并能靈活應用公式進行計算。

  四、學習設計

  (一)預習準備

  (1)預習書p23—26

  (2)思考:和的平方等于平方的和嗎?

  1、6《完全平方公式》習題

  1、已知實數x、y都大于2,試比較這兩個數的積與這兩個數的和的大小,并說明理由。

  2、已知(a+b)2=24,(a—b)2=20,求:

  (1)ab的值是多少?

  (2)a2+b2的值是多少?

  3、已知2(x+y)=—6,xy=1,求代數式(x+2)—(3xy—y)的值。

  《1、6完全平方公式》課時練習

  1、(5—x2)2等于;

  答案:25—10x2+x4

  解析:解答:(5—x2)2=25—10x2+x4

  分析:根據完全平方公式與冪的乘方法則可完成此題。

  2、(x—2y)2等于;

  答案:x2—8xy+4y2

  解析:解答:(x—2y)2=x2—8xy+4y2

  分析:根據完全平方公式與積的乘方法則可完成此題。

  3、(3a—4b)2等于;

  答案:9a2—24ab+16b2

  解析:解答:(3a—4b)2=9a2—24ab+16b2

  分析:根據完全平方公式可完成此題。

《完全平方公式》教案2

  教學目標

  1。使學生會分析和判斷一個多項式是否為完全平方式,初步掌握運用完全平方式把多項式分解因式的方法;

  2。理解完全平方式的意義和特點,培養學生的判斷能力。

  3.進一步培養學生全面地觀察問題、分析問題和逆向思維的能力.

  4.通過運用公式法分解因式的教學,使學生進一步體會“把一個代數式看作一個字母”的換元思想。

  教學重點和難點

  重點:運用完全平方式分解因式。

  難點:靈活運用完全平方公式公解因式。

  教學過程設計

  一、復習

  1。問:什么叫把一個多項式因式分解?我們已經學習了哪些因式分解的方法?

  答:把一個多項式化成幾個整式乘積形式,叫做把這個多項式因式分解。我們學過的因式分解的方法有提取公因式法及運用平方差公式法。

  2。把下列各式分解因式:

  (1)ax4-ax2 (2)16m4-n4。

  解 (1) ax4-ax2=ax2(x2-1)=ax2(x+1)(x-1)

  (2) 16m4-n4=(4m2)2-(n2)2

  =(4m2+n2)(4m2-n2)

  =(4m2+n2)(2m+n)(2m-n)。

  問:我們學過的乘法公式除了平方差公式之外,還有哪些公式?

  答:有完全平方公式。

  請寫出完全平方公式。

  完全平方公式是:

  (a+b)2=a2+2ab+b2, (a-b)2=a2-2ab+b2。

  這節課我們就來討論如何運用完全平方公式把多項式因式分解。

  二、新課

  和討論運用平方差公式把多項式因式分解的思路一樣,把完全平方公式反過來,就得到

  a2+2ab+b2=(a+b)2; a2-2ab+b2=(a-b)2。

  這就是說,兩個數的平方和,加上(或者減去)這兩個數的積的2倍,等于這兩個數的和(或者差)的平方。式子a2+2ab+b2及a2-2ab+b2叫做完全平方式,上面的兩個公式就是完全平方公式。運用這兩個式子,可以把形式是完全平方式的多項式分解因式。

  問:具備什么特征的多項是完全平方式?

  答:一個多項式如果是由三部分組成,其中的兩部分是兩個式子(或數)的平方,并且這兩部分的符號都是正號,第三部分是上面兩個式子(或數)的乘積的二倍,符號可正可負,像這樣的式子就是完全平方式。

  問:下列多項式是否為完全平方式?為什么?

  (1)x2+6x+9; (2)x2+xy+y2;

  (3)25x4-10x2+1; (4)16a2+1。

  答:(1)式是完全平方式。因為x2與9分別是x的平方與3的平方,6x=2·x·3,所以

  x2+6x+9=(x+3) 。

  (2)不是完全平方式。因為第三部分必須是2xy。

  (3)是完全平方式。25x =(5x ) ,1=1 ,10x =2·5x ·1,所以

  25x -10x +1=(5x-1) 。

  (4)不是完全平方式。因為缺第三部分。

  請同學們用箭頭表示完全平方公式中的`a,b與多項式9x2+6xy+y2中的對應項,其中a=?b=?2ab=?

  答:完全平方公式為:

  其中a=3x,b=y,2ab=2·(3x)·y。

  例1 把25x4+10x2+1分解因式。

  分析:這個多項式是由三部分組成,第一項“25x4”是(5x2)的平方,第三項“1”是1的平方,第二項“10x2”是5x2與1的積的2倍。所以多項式25x4+10x2+1是完全平方式,可以運用完全平方公式分解因式。

  解 25x4+10x2+1=(5x2)2+2·5x2·1+12=(5x2+1)2。

  例2 把1- m+ 分解因式。

  問:請同學分析這個多項式的特點,是否可以用完全平方公式分解因式?有幾種解法?

  答:這個多項式由三部分組成,第一項“1”是1的平方,第三項“ ”是 的平方,第二項“- m”是1與m/4的積的2倍的相反數,因此這個多項式是完全平方式,可以用完全平方公式分解因式。

  解法1 1- m+ =1-2·1· +( )2=(1- )2。

  解法2 先提出 ,則

  1- m+ = (16-8m+m2)

  = (42-2·4·m+m2)

  = (4-m)2。

  三、課堂練習(投影)

  1。填空:

  (1)x2-10x+( )2=( )2;

  (2)9x2+( )+4y2=( )2;

  (3)1-( )+m2/9=( )2。

  2。下列各多項式是不是完全平方式?如果是,可以分解成什么式子?如果不是,請把多

  項式改變為完全平方式。

  (1)x2-2x+4; (2)9x2+4x+1; (3)a2-4ab+4b2;

  (4)9m2+12m+4; (5)1-a+a2/4。

  3。把下列各式分解因式:

  (1)a2-24a+144; (2)4a2b2+4ab+1;

  (3)19x2+2xy+9y2; (4)14a2-ab+b2。

  答案:

  1。(1)25,(x-5) 2; (2)12xy,(3x+2y) 2; (3)2m/3,(1-m3)2。

  2。(1)不是完全平方式,如果把第二項的“-2x”改為“-4x”,原式就變為x2-4x+4,它是完全平方式;或把第三項的“4”改為1,原式就變為x2-2x+1,它是完全平方式。

  (2)不是完全平方式,如果把第二項“4x”改為“6x”,原式變為9x2+6x+1,它是完全平方式。

  (3)是完全平方式,a2-4ab+4b2=(a-2b)2。

  (4)是完全平方式,9m2+12m+4=(3m+2) 2。

  (5)是完全平方式,1-a+a2/4=(1-a2)2。

  3。(1)(a-12) 2; (2)(2ab+1) 2;

  (3)(13x+3y) 2; (4)(12a-b)2。

  四、小結

  運用完全平方公式把一個多項式分解因式的主要思路與方法是:

  1。首先要觀察、分析和判斷所給出的多項式是否為一個完全平方式,如果這個多項式是一個完全平方式,再運用完全平方公式把它進行因式分解。有時需要先把多項式經過適當變形,得到一個完全平方式,然后再把它因式分解。

  2。在選用完全平方公式時,關鍵是看多項式中的第二項的符號,如果是正號,則用公式a2+2ab+b2=(a+b) 2;如果是負號,則用公式a2-2ab+b2=(a-b) 2。

  五、作業

  把下列各式分解因式:

  1。(1)a2+8a+16; (2)1-4t+4t2;

  (3)m2-14m+49; (4)y2+y+1/4。

  2。(1)25m2-80m+64; (2)4a2+36a+81;

  (3)4p2-20pq+25q2; (4)16-8xy+x2y2;

  (5)a2b2-4ab+4; (6)25a4-40a2b2+16b4。

  3。(1)m2n-2mn+1; (2)7am+1-14am+7am-1;

  4。(1) x -4x; (2)a5+a4+ a3。

  答案:

  1。(1)(a+4)2; (2)(1-2t)2;

  (3)(m-7) 2; (4)(y+12)2。

  2。(1)(5m-8) 2; (2)(2a+9) 2;

  (3)(2p-5q) 2; (4)(4-xy) 2;

  (5)(ab-2) 2; (6)(5a2-4b2) 2。

  3。(1)(mn-1) 2; (2)7am-1(a-1) 2。

  4。(1) x(x+4)(x-4); (2)14a3 (2a+1) 2。

  課堂教學設計說明

  1。利用完全平方公式進行多項式的因式分解是在學生已經學習了提取公因式法及利用平方差公式分解因式的基礎上進行的,因此在教學設計中,重點放在判斷一個多項式是否為完全平方式上,采取啟發式的教學方法,引導學生積極思考問題,從中培養學生的思維品質。

  2。本節課要求學生掌握完全平方公式的特點和靈活運用公式把多項式進行因式分解的方法。在教學設計中安排了形式多樣的課堂練習,讓學生從不同側面理解完全平方公式的特點。例1和例2的講解可以在老師的引導下,師生共同分析和解答,使學生當堂能夠掌握運用平方公式進行完全因式分解的方法。

《完全平方公式》教案3

  一、學習目標

  1.會運用完全平方公式進行一些數的簡便運算

  二、學習重點

  運用完全平方公式進行一些數的簡便運算

  三、學習難點

  靈活運用平方差和完全平方公式進行整式的簡便運算

  四、學習設計

  (一)預習準備

  (1)預習書p26-27

  (2)思考:如何更簡單迅捷地進行各種乘法公式的運算?[

  (3)預習作業:1.利用完全平方公式計算

  (1)(2) (3)(4)

  2.計算:

  (1) (2)

  (二)學習過程

  平方差公式和完全平方公式的逆運用

  由 反之

  反之

  1、填空:

  (1)(2)(3)

  (4)(5)

  (6)

  (7)若,則k=

  (8)若是完全平方式,則k=

  例1計算:1. 2.

  現在我們從幾何角度去解釋完全平方公式:

  從圖(1)中可以看出大正方形的邊長是a+b,

  它是由兩個小正方形和兩個矩形組成,所以

  大正方形的面積等于這四個圖形的面積之和.

  則S= =

  即:

  如圖(2)中,大正方形的邊長是a,它的面積是 ;矩形DCGE與矩形BCHF是全等圖形,長都是 ,寬都是 ,所以它們的面積都是 ;正方形HCGM的邊長是b,其面積就是 ;正方形AFME的邊長是 ,所以它的面積是 .從圖中可以看出正方形AEMF的面積等于正方形ABCD的面積減去兩個矩形DCGE和BCHF的面積再加上正方形HCGM的面積.也就是:(a-b)2= .這也正好符合完全平方公式.

  例2.計算:

  (1) (2)

  變式訓練:

  (1) (2)

  (3) (4)(x+5)2–(x-2)(x-3)

  (5)(x-2)(x+2)-(x+1)(x-3) (6)(2x-y)2-4(x-y)(x+2y)

  拓展:1、(1)已知,則=

  (2)已知,求________,________

  (3)不論為任意有理數,的值總是()

  A.負數B.零C.正數D.不小于2

  2、(1)已知,求和的'值。

  (2)已知,求的值。

  (3).已知,求的值

  回顧小結

  1.完全平方公式的使用:在做題過程中一定要注意符號問題和正確認識a、b表示的意義,它們可以是數、也可以是單項式,還可以是多項式,所以要記得添括號。

  2.解題技巧:在解題之前應注意觀察思考,選擇不同的方法會有不同的效果,要學會優化選擇。

《完全平方公式》教案4

  一、教學目標

  【知識與技能】

  能夠運用完全平方公式對簡單的多項式進行因式分解

  【過程與方法】

  通過對實例的探究與合作,鍛煉公式推導與總結能力

  【情感態度與價值觀】

  在合作探究中,體會到數學學習的樂趣,加強交流合作能力

  二、教學重難點

  【教學重點】

  完全平方公式

  【教學難點】

  完全平方公式的推導過程與應用

  三、教學過程

  (1)情景設置,設疑導入

  老師展示正方形廣場圖片,并告知已知條件:邊長為a的正方形廣場兩個鄰邊有5米寬的道路,形成一個較大的正方形廣場,嘗試用不同方法求解整個廣場(包括道路)的`大小。

  預設:①(a+5)(看作一個整體)

  ②a+5+2×5×a(看作幾個部分)

  (2)師生合作,新課教學

  由學生板書得出等式:(a+5)=a+5+2×5×a,提出問題:如果將5米寬,換成b米寬又能得到什么呢?(小組交流討論)

  得出結論:

  進行證明:

  得到完全平方公式,記憶口訣:首平方,尾平方,首尾兩倍放中央。

  (3)鞏固提升,深化新知

  (4)小結作業,及時反思

  小結:請同學們談一談今天這節課的收獲:

  1.學會了完全平方公式

  2.學會了簡易計算平方式的能力

  3.提高了與同學們合作探究的能力,體會到了合作的樂趣

  作業:

  公式拓展:a+b=(a+b)+()

  91=()

  及時復習鞏固完全平方公式,并在生活中找一找完全平方公式的運用

《完全平方公式》教案5

  一、教學目標

  (1)知識與技能;學生通過推導完全平方公式,掌握公式結構,能計算。

  (2)過程與方法目標;學生探究完全平方公式,體會數形結合。

  二、教學重點:

公式結構及運用。

  三、教學難點:

公式中字母AB的含義理解與公式正確運用。

  四、教具:

自制長方形、正方形卡片

  五、教學過程:

  活動

  學生活動

  1、創設情景,提出問題,引入課題

  (1)想一想

  一位老人很喜歡孩子,每當孩子到他家做客時,老人都拿出糖招待他們,來了幾個孩子老人就會每個孩子幾塊糖。

  (1)第一天,a個男孩去看老人,老人共給他們幾塊糖?

  (2)第二天,個女孩子去看望老人,老人共給他們多少塊糖?

  (3)第三天,()個孩子一起去看望老人,老人共給他們多少塊糖?

  (4)第三天比前二天的孩子得到糖總數哪個多?多多少?為什么?(分組討論)

學生四人一組討論。

  填空:

  (1)第一天給孩子塊糖。

  (2)第二天給孩子塊糖。

  (3)第三天給孩子塊糖。

  男孩子第三天多得塊糖

  女孩第三天多得塊糖。

  活動

  學生活動

  (2)做一做、請同學拼圖

  教師巡視指導學生拼圖

  1、教師提問:

  (1)大正方形邊長?(2)每一塊卡片的面積是多少?(3)用不同形式表示正方形總面積,比較發現什么?

  2、想一想

  (1)(a+b)用多項式乘法法則說明

  (2)(a—b)

  3、請同學們自己敘述上面的等式

  4、說一說,ab能表示什么?

  (□+○)□+2□○+○

  5、算一算

  (1)(2X—3)(2)(4X+5Y)

  請同學們分清ab

  6、練一練

  (1)(2X—3Y)(2)(2XY—3X)

  7、試一試(a+b+c)

  作業:P1351、2

  學生2人一組拼圖交流

  2、學生觀察思考

  (1)大正方形邊長?

  (2)四塊卡片的。面積分別是

  (3)大正方形的.總面積是多少?

  3、(1)學生運用多項式乘法法則推導

  (a+b)=a+2ab+b說出每一步運算理由

  (2)學生自己探究交流

  4、學生用語言敘述公式

  5、師生共同a、b對應項教師書寫

  6、學生獨立完成練一練展示結果

  7、學生四人一組討論交流

  8、有興趣的同學可以探

《完全平方公式》教案6

  課題教案:

  完全平方公式

  學科:

  數學

  年級:

  七年級

  1內容本節課的主題:

  通過一系列的探究活動,引導學生從計算結果中總結出完全平方公式的兩種形式。

  1.1以教材作為出發點,依據《數學課程標準》,引導學生體會、參與科學探究過程。使學生通過收集和處理信息、表達與交流等活動,獲得知識、技能、方法、態度特別是創新精神和實踐能力等方面的發展。

  1.2用標準的數學語言得出結論,使學生感受科學的嚴謹,啟迪學生的數學思維。

  2教學目標

  2.1知識目標:會推導完全平方公式,并能運用公式進行簡單的計算;了解(a+b)2=a2+2ab+b2的幾何背景。

  2.2技能目標:經歷由一般的多項式乘法向乘法公式過渡的探究過程,進一步培養學生歸納總結的能力,并給公式的應用打下堅實的基礎。

  2.3情感與態度目標:通過觀察、實驗、歸納、類比、推斷獲得數學猜想,體驗數學活動充滿著探索性和創造性,感受證明的必要性、證明過程的嚴謹性以及結論的確定性。

  3教學重點

  完全平方公式的準確應用。

  4教學難點

  掌握公式中字母表達式的意義及靈活運用公式進行計算。

  5教育理念和教學方式

  5.1教學是師生交往、積極互動、共同發展的過程。教師是學生學習的組織者、促進者、合作者:本節的教學過程,要為學生的動手實踐,自主探索與合作交流提供機會,搭建平臺;尊重和自己意見不一致的學生,贊賞每一位學生的'結論和對自己的超越,尊重學生的個人感受和獨特見解;幫助學生發現他們所學東西的個人意義和社會價值,通過恰當的教學方式引導學生學會自我調適,自我選擇。

  學生是學習的主人,在教師指導下主動的、富有個性的學習,用自己的身體去親自經歷,用自己的心靈去親自感悟。

  5.2采用“問題情景—探究交流—得出結論—強化訓練”的模式展開教學。充分利用動手實踐的機會,盡可能增加教學過程的趣味性,強調學生的動手操作和主動參與,通過豐富多彩的集體討論、小組活動,以合作學習促進自主探究。

  6具體教學過程設計如下:

  6.1提出問題:[引入]同學們,前面我們學習了多項式乘多項式法則和合并同類項法則,你會計算下列各題嗎?

  (x+3)2=,(x-3)2=,這些式子的左邊和右邊有什么規律?再做幾個試一試:

  (2m+3n)2=,(2m-3n)2=

  6.2分析問題

  6.2.1[學生回答]分組交流、討論多項式的結構特點

  (1)原式的特點。兩數和的平方。

  (2)結果的項數特點。等于它們平方的和,加上它們乘積的兩倍

  (3)三項系數的特點(特別是符號的特點)。

  (4)三項與原多項式中兩個單項式的關系。

  6.2.2[學生回答]總結完全平方公式的語言描述:

  兩數和的平方,等于它們平方的和,加上它們乘積的兩倍;

  兩數差的平方,等于它們平方的和,減去它們乘積的兩倍。

  6.2.3、[學生回答]完全平方公式的數學表達式:

  (a+b)2=a2+2ab+b2;(a-b)2=a2-2ab+b2.

  6.3運用公式,解決問題

  6.3.1口答:(搶答形式,活躍課堂氣氛,激發學生的學習積極性)

  (m+n)2=,(m-n)2=,(-m+n)2=,(-m-n)2=,6.3.2小試牛刀

  ①(x+y)2=;②(-y-x)2=;

  ③(2x+3)2=;④(3a-2)2=;

  6.4學生小結:你認為完全平方公式在應用過程中,需要注意那些問題?

  (1)公式右邊共有3項。

  (2)兩個平方項符號永遠為正。

  (3)中間項的符號由等號左邊的兩項符號是否相同決定。

  (4)中間項是等號左邊兩項乘積的2倍。

  6.5[作業]P34隨堂練習P36習題

《完全平方公式》教案7

  一、教學目標

  1.理解完全平方公式的意義,準確掌握兩個公式的結構特征.

  2.熟練運用公式進行計算.

  3.通過推導公式訓練學生發現問題、探索規律的能力.

  4.培養學生用數形結合的方法解決問題的數學思想.

  5.滲透數學公式的結構美、和諧美.

  二、學法引導

  1.教學方法:嘗試指導法、講練結合法.

  2.學生學法:本節學習了乘法公式中的完全平方,一個是兩數和的平方,另一個是兩數差的平方,兩者僅一個“符號”不同.相乘的結果是兩數的平方和,加上(或減去)兩數的積的2倍,兩者也僅差一個“符號”不同,運用完全平方公式計算時,要注意:

  (1)切勿把此公式與公式 混淆,而隨意寫成 .

  (2)切勿把“乘積項”2ab中的2丟掉.

  (3)計算時,要先觀察題目是否符合公式的條件.若不符合,應先變形為符合公式的條件的形式,再利用公式進行計算;若不能變為符合條件的形式,則應運用乘法法則進行計算.

  三、重點·難點及解決辦法

  (一)重點

  掌握公式的結構特征和字母表示的.廣泛含義,正確運用公式進行計算.

  (二)難點

  綜合運用平方差公式與完全平方公式進行計算.

  (三)解決辦法

  加強對公式結構特征的深入理解,在反復練習中掌握公式的應用.

  四、課時安排

  一課時.

  五、教具學具準備

  投影儀或電腦、自制膠片.

  六、師生互動活動設計

  1.讓學生自編幾道符合平方差公式結構的計算題,目的是辨認題目的結構特征.

  2.引入完全平方公式,讓學生用文字概括公式的內容,培養抽象的數字思維能力.

  3.舉例分析如何正確使用完全平方公式,師生共練完成本課時重點內容.

  4.適時練習并總結,從實踐到理論再回到實踐,以指導今后的解題.

  七、教學步驟

  (一)明確目標

  本節課重點學習完全平方公式及其應用.

  (二)整體感知

  掌握好完全平方公式的關鍵在于能正確識別符合公式特征的結構,同時還要注意公式中2ab中2的問題,在解題過程中應多觀察、多思考、多揣摩規律.

  (三)教學過程

  1.計算導入;求得公式

  (1)敘述平方差公式的內容并用字母表示;

  (2)用簡便方法計算

  ①103×97

  ②103 × 103

  (3)請同學們自編一個符合平方差公式結構的計算題,并算出結果.

  學生活動:編題、解題,然后兩至三個學生說出題目和結果.

  要想用好公式,關鍵在于辨認題目的結構特征,正確使用公式,這節課我們繼續學習“乘

  法公式”.

  引例:計算 ,學生活動:計算 , ,兩名學生板演,其他學生在練習本上完成,然后說出答案,得出公式.

  或合并為:

  教師引導學生用文字概括公式.

  方法:由學生概括,教師給予肯定、否定或更正,同時板書.

  兩數和(或差)的平方,等于它們的平方和,加上(或減去)它們的積的2倍.

  【教法說明】

  ①復習平方差公式,主要是引起回憶,鞏固公式;編題在于提高興趣.

  ②有了平方差公式的推導過程,學生基本建立起了一些特殊多項式乘法的認識方法,因此推導完全平方公式可以由計算直接得出.

  2.結合圖形,理解公式

  根據圖形完成下列問題:

  如圖:A、B兩圖均為正方形,(1)圖A中正方形的面積為____________,(用代數式表示)

  圖Ⅰ、Ⅱ、Ⅲ、Ⅳ的面積分別為_______________________。

  (2)圖B中,正方形的面積為____________________,Ⅲ的面積為______________,Ⅰ、Ⅱ、Ⅳ的面積和為____________,用B、Ⅰ、Ⅱ、Ⅳ的面積表示Ⅲ的面積_________________。

  分別得出結論:

  學生活動:在教師引導下回答問題.

  【教法說明】利用圖形講解,增強學生對公式的直觀理解,以便更好地掌握公式,同時也培養學生數形結合的數學思想。

  3.探索新知,講授新課

  (1)引例:計算

  教師講解:在 中,把x看成a,把2y看成b,在 中把2x看成a,把3y看成b,則 、 ,就可用完全平方公式來計算,即

  【教法說明】 引例的目的在于使學生進一步理解公式的結構,為運用公式打好基礎.

  (2)例1 運用完全平方公式計算:

  ①   ②   ③

  學生活動:學生獨立在練習本上嘗試解題,3個學生板演.

  【教法說明】 讓學生先模仿公式解題,學生可能會出現一些問題,這也正是學生對公式理解、應用和熟練程度上存在的需要解決的問題,反饋后要緊扣公式,重點講解,達到解決問題的目的,關于例呈中(3)的計算,可對照公式直接計算,也可變形成 ,然后再進行計算,同時也可訓練學生靈活運用學過的知識的能力.

  4.嘗試反饋,鞏固知識

  練習一

  運用完全平方公式計算:

  (1)   (2)   (3)

  (4)   (5)   (6)

  (7)   (8)   (9)

  (l0)

  學生活動:學生在練習本上完成,然后同學互評,教師抽看結果,練習中存在的共性問題要集中解決.

  5.變式訓練,培養能力

  練習二

  運用完全平方公式計算:

  (l)  (2)  (3)  (4)

  學生活動:學生分組討論,選代表解答.

  練習三

  (1)有甲、乙、丙、丁四名同學,共同計算,以下是他們的計算過程,請判斷他們的計算是否正確,不正確的請指出錯在哪里.

  甲的計算過程是:原式

  乙的計算過程是:原式

  丙的計算過程是:原式

  丁的計算過程是:原式

  (2)想一想, 與 相等嗎?為什么?

  與 相等嗎?為什么?

  學生活動:觀察、思考后,回答問題.

  【教法說明】 練習二是一組數字計算題,使學生體會到公式的用途,也可以激發學生學習興趣,調動學生的學習積極性,同時也起到加深理解公式的作用.練習三第(l)題實際是課本例4,此題是與平方差公式的綜合運用,難度較大.通過給出解題步驟,讓學生進行判斷,使難度降低,學生易于理解,教師要注意引導學生分析這類題的結構特征,掌握解題方法.通過完成第(2)題使學生進一步理解 與 之間的相等關系,同時加深理解代數中“a”具有的廣泛意義.

  練習四

  運用乘法公式計算:

  (l)   (2)

  (3)  (4)

  學生活動:采取比賽的方式把學生分成四組,每組完成一題,看哪一組完成得快而且準確,每組各派一個學生板演本組題目.

  【教法說明】 這樣做的目的是訓練學生的快速反應能力及綜合運用知識的能力,同時也激發學生的學習興趣,活躍課堂氣氛.

  (四)總結、擴展

  這節課我們學習了乘法公式中的完全平方公式.

  引導學生舉例說明公式的結構特征,公式中字母含義和運用公式時應該注意的問題.

  八、布置作業

  P133 1,2.(3)(4).

  參考答案

  略.

《完全平方公式》教案8

  教學目標

  1、使學生理解完全平方公式的意義,弄清完全平方公式的形式和特點;使學生知道把完全平方公式反過來就可以得到相應的..因式分解。

  2、掌握運用完全平方公式分解因式的方法,能正確運用完全平方公式把多項式分解因式(直接用公式不超過兩次)

  教學方法:

  對比發現法課型新授課教具投影儀

  教師活動:

  學生活動

  復習鞏固:

  上節課我們學習了運用平方差公式分解因式,請同學們先閱讀課本87—88頁,看看你能有什么發現?

  新課講解:

  (投影)我們把形如a2+2ab+b2與a2-2ab+b2叫做完全平方式,和平方差公式一樣,我們也可以利用它把一些多項式因式分解。例如:

  a2+8a+16=a2+2×4a+42=(a+4)2

  a2-8a+16=a2-2×4a+42=(a-4)2

  (要強調注意符號)

  首先我們來試一試:(投影:牛刀小試)

  1.把下列各式分解因式:

  (1)x2+8x+16;(2)25a4+10a2+1

  (3)(m+n)2-4(m+n)+4

  (教師強調步驟的重要性,注意發現學生易錯點,及時糾正)

  2.把81x4-72x2y2+16y4分解因式

  (本題用了兩次乘法公式,難度稍大,教師要鼓勵學生大膽嘗試,敢于創新)

  將乘法公式反過來就得到多項式因式分解的公式。運用這些公式把一個多項式分解因式的方法叫做運用公式法。

  練習:第88頁練一練第1、2題

《完全平方公式》教案9

  重點、難點根據公式的特征及問題的特征選擇適當的公式計算.

  教學過程

  一、議一議

  1.邊長為(a+b)的正方形面積是多少?

  2.邊長分別為a、b拍的兩個正方形面積和是多少?

  3.你能比較(1)(2)的`結果嗎?說明你的理由.師生共同討論:學生回答(1)(a+b) (2)a +b (3)因為(a+b) = a +2ab+b ,所以 (a+b) -(a +b )=a +2ab+b -a -b =2ab,即(1)中的正方形面積比(2)中的正方形面積大.

  二、做一做

  例1. 利用完全平方式計算1. 102 。

  2. 197 師:要利用完全平方公式計算,則要創設符合公式特征的兩數和或兩數差的平方,且計算盡可能簡便.學生活動:在練習本上演示此題.讓學生敘述

  教師板書.解:1.102 =(100+2) 2.197 =(200-3) =100 +2 lOO 2+2, =200 -2 2O0 3十3 ,=10000+400+4 =40000-1200+9 =10404 =38809 例2.計算:1.(x-3) -x

  2.(2a+b- )(2a-b+ )師生共同分析:1中(x-3) 可利用完全平方公式.學生動筆解答第1題.教師根據學生解答情況,板書如下:解:1. (x-3) -x = x +6x+9-x =6x+9師問:此題還有其他方法解嗎?引導學生逆用平方差公式,從而培養學生創新精神.學生活動:分小組討論第(2)題的解法.此題學生解答,難度較大.教師要引導學生使用加法結合律,為使用公式創造條件.學生小組交流派代表進行全班交流.最后教師板書解題過程.解:2. (2a+b- )(2a-b+ )=[2a+(b- )][2a-(b- )]=(2a) -(b- ) =4a -(b-3b+ )=4a -b +3b-

  三、試一試

  計算:

  1. (a+b+c)

  2. (a+b) 師生共同分析:對于1要把多項式完全平方轉化為二項式的完全平方,要使用加法結合律,為使用完全平方公式創造條件.如(a+b+c) =[a+(b+c)] 對于(2)可化為(a+b) =(a+b)(a+b) .學生動筆:在練習本上解答,并與同伴交流你的做法.學生敘述。

  教師板書.解:1. (a+b+c) =[a+(b+c)] =(a+b) +2(a+b)c+ c = a +2ab+b +2ac+2bc+c = a +b +c +2ab+2ac+2bc

  四、隨堂練習

  P38 1

  五、小結

  本節課進一步學習了完全平方公式,在應用此公式運算時注意以下幾點. 1.使用完全平方公式首先要熟記公式和公式的特征,不能出現(ab) = a b 的錯誤,或(ab) = a ab+b (漏掉2倍)等錯誤.2.要能根據公式的特征及題目的特征靈活選擇適當的公式計算.3.用加法結合律,可為使用公式創造了條件.利用了這種方法,可以把多項式的完全平方轉化為二項式的完全平方.

  六、作業

  課本習題1.14 P38 1、2、3.

  七、教后反思

  1.9 整式的除法第一課時 單項式除以單項式教學目標1.經歷探索單項式除法的法則過程,了解單項式除法的意義.

  2.理解單項式除法法則,會進行單項式除以單項式運算.重點、難點重點:單項式除以單項式的運算.難點:單項式除以單項式法則的理解.

《完全平方公式》教案10

  一、教學目標:

  經歷探索完全平方公式的過程,進一步發展符號感和推理能力;在變式中,拓展提高;通過積極參與數學學習活動,培養學生自主探究能力,勇于創新的精神和合作學習的習慣;重點是正確理解完全平方公式(a±b)2=a2±2ab+b2,并初步運用;難點是完全平方公式的運用。

  二、教學過程:

  1.檢查學生的“預習知識樹”,導入課題:

  師:前面學習了平方差公式,同學們對平方差公式的結構特點、運用以及學習公式的意義有了初步的認識。今天,我們繼續學習、研究另一種“乘法公式”――完全平方公式。請拿出你的“預習知識樹”,小組內互查并交流,在預習中有疑問的同學請詢問。

  (活動:老師巡視、檢查學生的預習情況,并解答學生在預習中存在的問題)生:(互查、討論“預習知識樹”,有問題的詢問問題。)師:(老師點評學生預習情況,并出示老師做的“知識樹”,引出課題:完全平方公式。)說明:把預習提到課前,利用“知識樹”引導學生自學,學生可以獨立思考、自主學習,也可合作交流、討論研究,這樣預習會更充分,聽講時就能有準備、有選擇;一上課,老師就檢查“預習知識樹”,了解學生新課學習情況,適當點撥,在課堂上留出更多的時間大量拓展、提高,發展學生的能力。

  2.自學檢測,制造通用工具:師:下面進行自學檢測.計算:⑴(x+3)2;⑵(2x-5)2;⑶(mn+t)2;⑷(-4x+y2)2。

  (活動:投影顯示練習題。)生:(四人到黑板上板演,答錯了,由學生糾正,老師再點評。)師:觀察練習,公式中的a、b可代表什么?

  生:可以表示一個數,也可以表示一個單項式、多項式。

  說明:點評時,老師反復引導學生分清題目中哪部分相當于公式中的a,哪部分相當于公式中的b,就是讓學生明確“公式中的a、b可表示數,也可表示一個單項式、多項式或其他的.式子”的變化規律,即制造通用工具。在前面學習平方差公式時,學生應該認識到這個道理,在這里再次強化。

  師:說得非常好,明確“公式中的a、b可以表示一個數,也可以表示一個單項式、多項式”的變化規律,就能正確運用公式解題了。顯然,剛做的練習題是由公式變化來的,若是變下去,能變多少道題?

  生:無數道。師:最終是幾道題?生:一道。說明:這就是老師的“暗線”語言,引導學生明白從公式出發,反映在a、b上只是取值不同,可以演變出無數道題,是“解壓”的過程,最終還是利用公式解題,所有的題目只有“一道”,只是形式不同,這又是“壓縮”的過程,把握了變化規律才能更好地解題。

  師:你會變了嗎?請各小組編題。(活動:四人小組先在組內討論、交流,再推選完成最快的兩個小組出示題目,其他小組同學練習。)說明:引導學生現場出題,一是激發學生興趣、活躍氣氛,二是驗證變化規律。

  師:下面思考,如何計算:(a+b+c)2生1:可根據多項式乘以多項式來計算,就是把(a+b+c)2看做(a+b+c)(a+b+c)。

  師:不錯。還有其他方法嗎?生2:也可以把其中的(a+b)兩項看成一項,變成[(a+b)+c]2的形式,就能直接運用完全平方公式了。

  師:說得非常好。兩種方法都可以,但哪種更簡單呢?請你任選一種,完成練習。

  生:(緊張地做題,同時找兩個學生到黑板上板演。)師:這道題若是變為(a+b+c+d)2,你會做嗎?

  生:(齊答)會。師:怎么辦?生1:把其中(a+b)看做一項,(c+d)看做一項,還是利用完全平方公式解題。

  生2:還有其他分組方式,如把(a+c)看做一項,(b+d)看做一項,也能直接運用公式解題。

  師:方法一樣嗎?生:一樣的。師:還能變下去嗎?這樣可以變出多少道題?

  生:無數道。師:最終是幾道題?生:(齊答)一道題。師:現在,老師相信每個學生都會解這樣的題了。課下,請同學們思考:如果把(a+b)2的指數變化一下,又可以變出多少道題,你能計算出來嗎?

  (活動:投影顯示一組題目,如(a+b)3、(a+b)4……)說明:這就是老師進一步利用這個例子論證“公式中的a、b可表示數,也可表示一個單項式、多項式或其他的式子”的變化規律。

  3.通過大量的習題驗證通用工具,學生并且自造通用工具。

  師:通過前面的檢測,看出同學們已經基本掌握了完全平方公式。下面進入達標檢測。

  (活動:投影顯示達標檢測題)1.填空:

  ①(2x+3y)2=______;②(14a-1)2=116a2-____+1;③當x=5,y=2,則(x+y)(x-y)-(x-y)2=_________。

  2.計算:

  ①(-2m-n)2;②(2-3a2)(3a2-2);③(-cd+12)2;④(n+3)2-n23.計算:(x+2y+3)(x+2y-3)生:(積極、主動地在作業本上完成上面練習題。)師:(巡視,批閱完成快的學生的作業,最后集體點評,只講不會的。)說明:第2①題,可先變形為[-(2m+n)]2,再按(a+b)2的公式展開,也可直接理解成-2m與n的差,按(a-b)2計算;第2②題將(2-3a2)變形為-(3a2-2),原式可轉化為-(3a2-2)2,直接運用公式計算;第2④題把(n+3)看做a

  、n看做b,逆用平方差公式也是一種解法,同時訓練學生的逆向思維;第3題是下節課訓練內容,在這里可以提前,引導學生通過變形,得出(x+2y+3)(x+2y-3)=[(x+2y)+3][(x+2y)-3]=(x+2y)2-32=x2+4xy+4y2-9,這里還是把(x+2y)看做a、3看做b,進一步驗證了“通用工具”,即“解決某一類問題的一種思維方式或方法”。拓展提高還是在“變”上下功夫,要求學生能較熟練掌握,逐步達到腦算的層次,水到渠成,能力自然提高,學生就會自造“通用工具”了。

  4.嫁接“知識樹”,推薦作業。師:本節課你有什么收獲?還有什么問題嗎?

  (活動:再次投影本節課“知識樹”。)生:這節課我們學習、研究了完全平方公式(a±b)2=a2±2ab+b2,知道了公式中a、b,可以是單項式也可以是多項式,能運用公式解題了,能力上又有新的提高.師:課下完成本節課的作業.[投影顯示]思考題:計算(a+b+c)2、(a+b+c+d)2的結果,觀察有什么規律,感興趣的同學還可計算(a+b)3、(a+b)4的結果,你又能發現什么規律.預習指導:①課本第38-39頁內容,重點研究例3兩個題目的解題方法,能嘗試獨自解答課后隨堂練習或習題,②設計下節課“知識樹”,優化本單元“知識樹”。說明:本環節是將本節課“知識樹”

  移植到乘法公式的單元“知識樹”上,整體構建知識,同時更加強化了學生的“能力樹”。作業是推薦性的作業,達標檢測就是“堂堂清”,學生課下只須做好預習作業就行了,這樣會有更多自由安排的時間,發展個性。

《完全平方公式》教案11

  授課教師:

  授課時間:

  課型:新授

  課題:3.4探究實際問題與一元一次方程組

  教學目標基礎知識:掌握一元一次方程得解法,了解銷售中的數量關系。

  基本技能:能夠分析實際問題中的數量關系,找相等關系,列出一元一次方程。

  基本思想

  方法:通過將實際問題轉化成數學問題,培養學生的'建模思想;

  基本活動經驗體會解決實際問題的一般步驟及盈虧中的關系

  重點探索并掌握列一元一次方程解決實際問題的方法,教學

  難點找出已知量與未知量之間的關系及相等關系。

  教具資料準備教師準備:課件

  學生準備:書、本

  教學過程自備

  補充集備

  補充

  一、創設情景引入新課

  觀察圖片引課(見大屏幕)

  二、探究

  探究銷售中的盈虧問題:

  1、商品原價200元,九折出售,賣價是元。

  2、商品進價是30元,售價是50元,則利潤

  是元。

  2、某商品原來每件零售價是a元,現在每件降價10%,降價后每件零售價是元。

  3、某種品牌的彩電降價20%以后,每臺售價為a元,則該品牌彩電每臺原價應為元。

  4、某商品按定價的八折出售,售價是14.8元,則原定售價是。

  (學生總結公式)

  熟悉各個量之間的聯系有助于熟悉利潤、利潤率售價進價之間聯系

《完全平方公式》教案12

  一、教學目標

  (1)知識與技能;學生通過推導完全平方公式,掌握公式結構,能計算。

  (2)過程與方法目標;學生探究完全平方公式,體會數形結合。

  二、教學重點;公式結構及運用。

  三、教學難點;公式中字母AB的含義理解與公式正確運用。

  四、教具;自制長方形、正方形卡片

  五、教學過程;

  教師活動

  學生活動

  1、1、創設情景,提出問題,引入課題

  (1)想一想

  一位老人很喜歡孩子,每當孩子到他家做客時,老人都拿出糖招待他們,來了幾個孩子老人就會每個孩子幾塊糖。

  (1)第一天,a個男孩去看老人,老人共給他們幾塊糖?

  (2)第二天,個女孩子去看望老人,老人共給他們多少塊糖?

  (3)第三天,()個孩子一起去看望老人,老人共給他們多少塊糖?

  (4)第三天比前二天的孩子得到糖總數哪個多?多多少?為什么?(分組討論)

  1、1、學生四人一組討論。

  填空:

  (1)第一天給孩子塊糖。

  (2)第二天給孩子塊糖。

  (3)第三天給孩子塊糖。

  男孩子第三天多得塊糖

  女孩第三天多得塊糖。

  教師活動

  學生活動

  (2)做一做、請同學拼圖

  a

  教師巡視指導學生拼圖

  2、2、教師提問:

  (1)、大正方形邊長?(2)每一塊卡片的面積是多少?(3)用不同形式表示正方形總面積,比較發現什么?

  3、3、想一想

  (1)(a+b)用多項式乘法法則說明

  (2)(a-b)

  4、請同學們自己敘述上面的等式

  5、說一說,ab能表示什么?

  (□+○)□+2□○+○

  6、算一算

  (1)(2X-3)(2)(4X+5Y)

  請同學們分清ab

  7、練一練

  (1)(2X-3Y)(2)(2XY-3X)

  8、試一試(a+b+c)

  作業:P1351、2

  學生2人一組拼圖交流

  2、學生觀察思考

  (1)大正方形邊長?

  (2)四塊卡片的面積分別是

  (3)大正方形的'總面積是多少?

  3、(1)學生運用多項式乘法法則推導

  (a+b)=a+2ab+b說出每一步運算理由

  (2)學生自己探究交流

  4、學生用語言敘述公式

  5、師生共同a、b對應項教師書寫

  6、學生獨立完成練一練展示結果

  7、學生四人一組討論交流

  8、有興趣的同學可以探

《完全平方公式》教案13

  一、教材分析

  完全平方公式是初中代數的一個重要組成部分,是學生在已經掌握單項式乘法、多項式乘法及平方差公式基礎上的拓展,對以后學習因式分解、解一元二次方程、配方法、勾股定理及圖形面積計算都有舉足輕重的作用。

  本節課是繼乘法公式的內容的一種升華,起著承上啟下的作用。在內容上是由多項式乘多項式而得到的,同時又為下一節課打下了基礎,環環相扣,層層遞進。通過這節課的學習,可以培養學生探索與歸納能力,體會到從簡單到復雜,從特殊到一般和轉化等重要的思想方法。

  二、學情分析

  多數學生的抽象思維能力、邏輯思維能力、數學化能力有限,理解完全平方公式的幾何解釋、推導過程、結構特點有一定困難。所以教學中應盡可能多地讓學生動手操作,突出完全平方公式的探索過程,自主探索出完全平方公式的基本形式,并用語言表述其結構特征,進一步發展學生的合情推理能力、合作交流能力和數學化能力。

  三、教學目標

  知識與技能

  利用添括號法則靈活應用乘法公式。

  過程與方法

  利用去括號法則得到添括號法則,培養學生的逆向思維能力。

  情感態度與價值觀

  鼓勵學生算法多樣化,培養學生多方位思考問題的習慣,提高學生的.合作交流意識和創新精神。

  四、教學重點難點

  教學重點

  理解添括號法則,進一步熟悉乘法公式的合理利用.

  教學難點

  在多項式與多項式的乘法中適當添括號達到應用公式的目的.

  五、教學方法

  思考分析、歸納總結、練習、應用拓展等環節。

  六、教學過程設計

  師生活動

  設計意圖

  一.提出問題,創設情境

  請同學們完成下列運算并回憶去括號法則.

  (1)4+(5+2) (2)4-(5+2) (3)a+(b+c) (4)a-(b-c)去括號法則:

  去括號時,如果括號前是正號,去掉括號后,括號里的每一項都不改變符合;如果括號前是負號,去掉括號后,括號里的各項都改變符合.

  也就是說,遇“加”不變,遇“減”都變.

  二、探究新知

  把上述四個等式的左右兩邊反過來,又會得到什么結果呢?

  (1) 4+5+2=4+(5+2) (2)4-5-2=4-(5+2)

  (3) a+b+c =a+(b+c)(4)a-b+c=a-(b-c)

  左邊沒括號,右邊有括號,也就是添了括號,同學們可不可以總結出添括號法則來呢?

  (學生分組討論,最后總結)

  添括號法則是:

  添括號時,如果括號前面是正號,括到括號里的各項都不變符號;如果括號前面是負號,括到括號里的各項都改變符號.

  也是:遇“加”不變,遇“減”都變.

  請同學們利用添括號法則完成下列練習:

  1.在等號右邊的括號內填上適當的項:

  (1)a+b-c=a+( ) (2)a-b+c=a-( )

  (3)a-b-c=a-( ) (4)a+b+c=a-( )

  判斷下列運算是否正確.

  (1)2a-b-=2a-(b-) (2)m-3n+2a-b=m+(3n+2a-b)

  (3)2x-3y+2=-(2x+3y-2) (4)a-2b-4c+5=(a-2b)-(4c+5)

  總結:添括號法則是去括號法則反過來得到的,無論是添括號,還是去括號,運算前后代數式的值都保持不變,所以我們可以用去括號法則驗證所添括號后的代數式是否正確.

  三、新知運用

  有些整式相乘需要先作適當的變形,然后再用公式,這就需要同學們理解乘法公式的結構特征和真正內涵.請同學們分組討論,完成下列計算.

  例:運用乘法公式計算

  (1)(x+2y-3)(x-2y+3) (2)(a+b+c)2

  (3)(x+3)2-x2 (4)(x+5)2-(x-2)(x-3)

  四.隨堂練習:

  1.課本P111練習

  2.《學案》101頁——鞏固訓練

  五、課堂小結:

  通過本節課的學習,你有何收獲和體會?

  我們學會了去括號法則和添括號法則,利用添括號法則可以將整式變形,從而靈活利用乘法公式進行計算.

  我體會到了轉化思想的重要作用,學數學其實是不斷地利用轉化得到新知識,比如由繁到簡的轉化,由難到易的轉化,由已知解決未知的轉化等等.

  六、檢測作業

  習題14.2: 必做題: 3 、4 、5題

  選做題:7題

  知識梳理,教學導入,激發學生的學習熱情

  交流合作,探究新知,以問題驅動,層層深入。

  歸納總結,提升課堂效果。

  作業檢測,檢測目標的達成情況。

《完全平方公式》教案14

  課題教案:完全平方公式

  學科:數學

  年級:七年級

  1內容本節課的主題:通過一系列的探究活動,引導學生從計算結果中總結出完全平方公式的兩種形式。

  1.1以教材作為出發點,依據《數學課程標準》,引導學生體會、參與科學探究過程。使學生通過收集和處理信息、表達與交流等活動,獲得知識、技能、方法、態度特別是創新精神和實踐能力等方面的發展。

  1.2用標準的數學語言得出結論,使學生感受科學的嚴謹,啟迪學生的數學思維。

  2教學目標

  2.1知識目標:會推導完全平方公式,并能運用公式進行簡單的計算;了解(a+b)2=a2+2ab+b2的幾何背景。

  2.2技能目標:經歷由一般的多項式乘法向乘法公式過渡的探究過程,進一步培養學生歸納總結的能力,并給公式的應用打下堅實的基礎。

  2.3情感與態度目標:通過觀察、實驗、歸納、類比、推斷獲得數學猜想,體驗數學活動充滿著探索性和創造性,感受證明的必要性、證明過程的`嚴謹性以及結論的確定性。

  3教學重點完全平方公式的準確應用。

  4教學難點掌握公式中字母表達式的意義及靈活運用公式進行計算。

  5教育理念和教學方式

  5.1教學是師生交往、積極互動、共同發展的過程。教師是學生學習的組織者、促進者、合作者:本節的教學過程,要為學生的動手實踐,自主探索與合作交流提供機會,搭建平臺;尊重和自己意見不一致的學生,贊賞每一位學生的結論和對自己的超越,尊重學生的個人感受和獨特見解;幫助學生發現他們所學東西的個人意義和社會價值,通過恰當的教學方式引導學生學會自我調適,自我選擇。

  學生是學習的主人,在教師指導下主動的、富有個性的學習,用自己的身體去親自經歷,用自己的心靈去親自感悟。

  5.2采用“問題情景—探究交流—得出結論—強化訓練”的模式展開教學。充分利用動手實踐的機會,盡可能增加教學過程的趣味性,強調學生的動手操作和主動參與,通過豐富多彩的集體討論、小組活動,以合作學習促進自主探究。

  6具體教學過程設計如下:

  6.1提出問題:[引入]同學們,前面我們學習了多項式乘多項式法則和合并同類項法則,你會計算下列各題嗎?

  (x+3)2=,(x-3)2=,

  這些式子的左邊和右邊有什么規律?再做幾個試一試:

  (2m+3n)2=,(2m-3n)2=

  6.2分析問題

  6.2.1[學生回答]分組交流、討論 多項式的結構特點

  (1)原式的特點。兩數和的平方。

  (2)結果的項數特點。等于它們平方的和,加上它們乘積的兩倍

  (3)三項系數的特點(特別是符號的特點)。

  (4)三項與原多項式中兩個單項式的關系。

  6.2.2[學生回答]總結完全平方公式的語言描述:

  兩數和的平方,等于它們平方的和,加上它們乘積的兩倍;

  兩數差的平方,等于它們平方的和,減去它們乘積的兩倍。

  6.2.3、[學生回答]完全平方公式的數學表達式:

  (a+b)2=a2+2ab+b2;(a-b)2=a2-2ab+b2.

  6.3運用公式,解決問題

  6.3.1口答:(搶答形式,活躍課堂氣氛,激發學生的學習積極性)

  (m+n)2=, (m-n)2=,

  (-m+n)2=, (-m-n)2=,

  6.3.2小試牛刀

  ①(x+y)2=;②(-y-x)2=;

  ③(2x+3)2=;④(3a-2)2=;

  6.4學生小結:你認為完全平方公式在應用過程中,需要注意那些問題?

  (1)公式右邊共有3項。

  (2)兩個平方項符號永遠為正。

  (3)中間項的符號由等號左邊的兩項符號是否相同決定。

  (4)中間項是等號左邊兩項乘積的2倍。

  6.5[作業]P34隨堂練習P36習題

《完全平方公式》教案15

  完全平方公式(教案) 賈村中學 聶盼山

  一、教學目標

  (1) (1) 知識與技能;學生通過推導完全平方公式,掌握公式結構,能計算,數學教案-完全平方公式(教案)。

  (2) (2) 過程與方法目標;學生探究完全平方公式,體會數形結合。

  二、教學重點;公式結構及運用。

  三、教學難點;公式中字母AB的含義理解與公式正確運用。

  四、教具;自制長方形、正方形卡片

  五、教學過程;

  教師活動

  學生活動

  1、 1、 創設情景,提出問題,引入課題

  (1) (1) 想一想

  一位老人很喜歡孩子,每當孩子到他家做客時,老人都拿出糖招待他們,來了幾個孩子老人就會每個孩子幾塊糖。

  (1) (1) 第一天,a個男孩去看老人,老人共給他們幾塊糖?

  (2) (2) 第二天,個女孩子去看望老人,老人共給他們多少塊糖?

  (3) (3) 第三天,( )個孩子一起去看望老人,老人共給他們多少塊糖?

  (4) (4) 第三天比前二天的孩子得到糖總數哪個多?多多少?為什么?(分組討論)

  1、 1、 學生四人一組討論。

  填空:

  (1)第一天給孩子 塊糖。

  (2)第二天給孩子 塊糖。

  (3)第三天給孩子 塊糖。

  男孩子第三天多得 塊糖

  女孩第三天多得 塊糖。

  教師活動

  學生活動

  (2) (2) 做一做、請同學拼圖

  a

  教師巡視指導學生拼圖

  2、 2、 教師提問:

  (1)、大正方形邊長?(2)每一塊卡片的面積是多少?(3)用不同形式表示正方形總面積,比較發現什么?

  3、 3、 想一想

  (1)(a +b )用多項式乘法法則說明

  (2)( a -b )

  4、請同學們自己敘述上面的等式

  5、說一說,a b能表示什么?

  (□+○) □+2□○+○

  6、算一算

  (1)(2X-3)(2)(4X+5Y)

  請同學們分清a b

  7、練一練

  (1)(2X-3Y) (2)(2XY-3X)

  8、試一試(a+b+c)

  作業:P135 1、2

  學生2人一組拼圖交流

  2、學生觀察思考

  (1) (1) 大正方形邊長?

  (2) (2) 四塊卡片的面積分別是

  (3) (3) 大正方形的總面積是多少?

  3、(1)學生運用多項式乘法法則推導

  (a+b)=a+2ab+b說出每一步運算理由

  (2)學生自己探究交流

  4、學生用語言敘述公式

  5、師生共同a、b對應項 教師書寫

  6、學生獨立完成練一練展示結果

  7、學生四人一組討論交流

  8、有興趣的同學可以探

  完全平方公式(教案) 賈村中學 聶盼山

  一、教學目標

  (1) (1) 知識與技能;學生通過推導完全平方公式,掌握公式結構,能計算。

  (2) (2) 過程與方法目標;學生探究完全平方公式,體會數形結合。

  二、教學重點;公式結構及運用。

  三、教學難點;公式中字母AB的含義理解與公式正確運用。

  四、教具;自制長方形、正方形卡片

  五、教學過程;

  教師活動

  學生活動

  1、 1、 創設情景,提出問題,引入課題

  (1) (1) 想一想

  一位老人很喜歡孩子,每當孩子到他家做客時,老人都拿出糖招待他們,來了幾個孩子老人就會每個孩子幾塊糖。

  (1) (1) 第一天,a個男孩去看老人,老人共給他們幾塊糖?

  (2) (2) 第二天,個女孩子去看望老人,老人共給他們多少塊糖?

  (3) (3) 第三天,( )個孩子一起去看望老人,老人共給他們多少塊糖?

  (4) (4) 第三天比前二天的孩子得到糖總數哪個多?多多少?為什么?(分組討論)

  1、 1、 學生四人一組討論,初中數學教案《數學教案-完全平方公式(教案)》。

  填空:

  (1)第一天給孩子 塊糖。

  (2)第二天給孩子 塊糖。

  (3)第三天給孩子 塊糖。

  男孩子第三天多得 塊糖

  女孩第三天多得 塊糖。

  教師活動

  學生活動

  (2) (2) 做一做、請同學拼圖

  a

  教師巡視指導學生拼圖

  2、 2、 教師提問:

  (1)、大正方形邊長?(2)每一塊卡片的面積是多少?(3)用不同形式表示正方形總面積,比較發現什么?

  3、 3、 想一想

  (1)(a +b )用多項式乘法法則說明

  (2)( a -b )

  4、請同學們自己敘述上面的等式

  5、說一說,a b能表示什么?

  (□+○) □+2□○+○

  6、算一算

  (1)(2X-3)(2)(4X+5Y)

  請同學們分清a b

  7、練一練

  (1)(2X-3Y) (2)(2XY-3X)

  8、試一試(a+b+c)

  作業:P135 1、2

  學生2人一組拼圖交流

  2、學生觀察思考

  (1) (1) 大正方形邊長?

  (2) (2) 四塊卡片的面積分別是

  (3) (3) 大正方形的總面積是多少?

  3、(1)學生運用多項式乘法法則推導

  (a+b)=a+2ab+b說出每一步運算理由

  (2)學生自己探究交流

  4、學生用語言敘述公式

  5、師生共同a、b對應項 教師書寫

  6、學生獨立完成練一練展示結果

  7、學生四人一組討論交流

  8、有興趣的`同學可以探

  完全平方公式(教案) 賈村中學 聶盼山

  一、教學目標

  (1) (1) 知識與技能;學生通過推導完全平方公式,掌握公式結構,能計算。

  (2) (2) 過程與方法目標;學生探究完全平方公式,體會數形結合。

  二、教學重點;公式結構及運用。

  三、教學難點;公式中字母AB的含義理解與公式正確運用。

  四、教具;自制長方形、正方形卡片

  五、教學過程;

  教師活動

  學生活動

  1、 1、 創設情景,提出問題,引入課題

  (1) (1) 想一想

  一位老人很喜歡孩子,每當孩子到他家做客時,老人都拿出糖招待他們,來了幾個孩子老人就會每個孩子幾塊糖。

  (1) (1) 第一天,a個男孩去看老人,老人共給他們幾塊糖?

  (2) (2) 第二天,個女孩子去看望老人,老人共給他們多少塊糖?

  (3) (3) 第三天,( )個孩子一起去看望老人,老人共給他們多少塊糖?

  (4) (4) 第三天比前二天的孩子得到糖總數哪個多?多多少?為什么?(分組討論)

  1、 1、 學生四人一組討論。

  填空:

  (1)第一天給孩子 塊糖。

  (2)第二天給孩子 塊糖。

  (3)第三天給孩子 塊糖。

  男孩子第三天多得 塊糖

  女孩第三天多得 塊糖。

  教師活動

  學生活動

  (2) (2) 做一做、請同學拼圖

  a

  教師巡視指導學生拼圖

  2、 2、 教師提問:

  (1)、大正方形邊長?(2)每一塊卡片的面積是多少?(3)用不同形式表示正方形總面積,比較發現什么?

  3、 3、 想一想

  (1)(a +b )用多項式乘法法則說明

  (2)( a -b )

  4、請同學們自己敘述上面的等式

  5、說一說,a b能表示什么?

  (□+○) □+2□○+○

  6、算一算

  (1)(2X-3)(2)(4X+5Y)

  請同學們分清a b

  7、練一練

  (1)(2X-3Y) (2)(2XY-3X)

  8、試一試(a+b+c)

  作業:P135 1、2

  學生2人一組拼圖交流

  2、學生觀察思考

  (1) (1) 大正方形邊長?

  (2) (2) 四塊卡片的面積分別是

  (3) (3) 大正方形的總面積是多少?

  3、(1)學生運用多項式乘法法則推導

  (a+b)=a+2ab+b說出每一步運算理由

  (2)學生自己探究交流

  4、學生用語言敘述公式

  5、師生共同a、b對應項 教師書寫

  6、學生獨立完成練一練展示結果

  7、學生四人一組討論交流

  8、有興趣的同學可以探

【《完全平方公式》教案】相關文章:

完全平方公式教案12-29

《完全平方公式》教案07-13

《完全平方公式》教學反思06-18

《完全平方公式》的教學反思(通用15篇)12-13

《完全平方和差公式》教學反思08-28

《完全平方和差公式》教學反思3篇03-30

平方根教學反思03-23

平方根教學反思06-12

《乘法公式》教學反思04-02

主站蜘蛛池模板: 免费的国产成人av网站装睡的| 久久精品aⅴ无码中文字字幕重口| 精品国产男人的天堂久久| 国产成人无码免费视频97| 欧美激情一区二区三区| 国产动作大片中文字幕| 99精品视频在线观看免费蜜桃| 亚洲一区二区av在线观看| 亚洲男人第一无码av网| 亚洲中国最大av网站| 99re6在线视频精品免费| 国产国语熟妇视频在线观看| 无码精品、日韩专区| 亚洲av无码一区二区三区网站| 久久国产精品一国产精品金尊| 爆乳护士一区二区三区在线播放| 777米奇久久最新地址| 精产国品一二三产区蘑菇视频| 国产永久免费高清在线| 国产人妻一区二区三区久| 欧美成人怡红院一区二区| 亚洲人ⅴsaⅴ国产精品| 国产av国内精品jk制服| 国产成年女人毛片80s网站| 特黄特色大片免费播放器图片| √天堂8资源中文在线| 久久一日本综合色鬼综合色| 日韩人妻无码精品久久久不卡| 好男人www社区视频在线资源| 精品国产乱码久久久久久夜深人妻| 国产亚洲精aa在线观看| 日日噜噜夜夜狠狠视频无码| а天堂8中文最新版在线官网| 日日躁狠狠躁狠狠爱| 亚洲av乱码一区二区三区| 国产网红主播无码精品| 欧美综合自拍亚洲综合区| 国产精品自在在线午夜精华在线| 亚洲熟妇中文字幕曰产无码| 国产精品视频露脸| 99久久精品国产综合|