- 相關推薦
《因數和倍數》數學教案(精選10篇)
作為一名默默奉獻的教育工作者,往往需要進行教案編寫工作,教案是教學活動的依據,有著重要的地位。寫教案需要注意哪些格式呢?以下是小編幫大家整理的《因數和倍數》數學教案,僅供參考,大家一起來看看吧。
《因數和倍數》數學教案 篇1
教學目標
讓學生能利用最大公因數知識解決生活中的實際問題。
教學重難點
教學重點
利用最大公因數知識解決生活中的實際問題。
教學難點
利用最大公因數知識解決生活中的實際問題。
教學工具
課件
教學過程
一、導入新課
1. 什么是公因數?什么是最大公因數?
2. 找出每組數的最大公因數。
5和15 21和28 30和18 8和9 11和33 12和42
過渡:在現實生活中,有的問題需要用最大公因數的知道來解決,這就是我們今天要學習的內容。
二、新課教學
出示教材第62頁例3。
(1)引導學生審題,理解題意。在貯藏室的.長方形地面上鋪正方形地磚。要求既要鋪滿,又要都用整塊的方磚。
(2)學生以小組為單位,探究如何拼擺。
每組4人,在課前印好畫有長方形的方格紙,每人選擇一種邊長的方磚,試一試,只要畫滿一條長邊,一條寬邊就可以。
教師巡視指導,輔導學生。
(3)多媒體演示拼擺過程,進一步驗證學生動手操作的情況。
(4)教師:應該怎樣選擇方磚來鋪地呢?
通過交流,得出結論:要使所用的正方形地磚都是整塊的,地磚的邊長必須既是16的因數,又是12的因數。
(5)12和16的公因數有1、2、4,其中最大公因數是4。所以可選邊長是1 dm、2 dm、4 dm的地磚,邊長最大的是4dm。
三、鞏固練習
1.教材第63頁練習十五第5題。
此題是有關兩數最大公因數的實際問題。教師要引導學生理解題意,要剪成“同樣大小的正方形而沒有剩余”。正方形的邊長必須既是70的因數又是50的因數,要使正方形的邊長最大,所以要找70和50的最大公因數。學生弄清題意后,由學生獨立完成,然后全班反饋。
2.教材第63頁練習十五第6題。
此題也是有關兩數最大公因數的實際問題,“要使每排的人數相等”則每排的人數必須既是48,又是36的因數,要使每排的人數最多,所以要找48和36的最大公因數,學生理解題意即可完成。
3.教材第64頁練習十五第9題。
此題檢查學生當兩數是倍數關系、互質關系、一般關系情況下求最大公因數的能力。
參考答案:
5.長方形的邊長是70和50的最大公因數是10 cm,所以小正方形的邊長最長是10cm。
6.每排人數是36和48的最大公因數,是12人。
男生:48÷12=4(排) 女生:36÷12=3(排)
9.(1)A (2)C (3)C
四、課堂小結
今天你學習了什么?有什么收獲?
五、布置作業
教材第64頁練習十五第7、8、10題。
《因數和倍數》數學教案 篇2
一、教學內容
教材第30~51頁的“例1~例12”以及練習五~七。
二、教材分析
本單元主要教學因數和倍數,以及公因數和公倍數等內容。本單元內容大體分三段安排:第一段,認識因數和倍數,學習在1~100的自然數中有序地找出10以內某個數的所有倍數,以及100以內某個數的所有因數;探索2、5、和3的倍數的特征,學習判斷一個數是不是2、5或3的倍數,同時認識奇數和偶數。第二段,認識質數、合數和質因數,學習把一個合數分解質因數。第三段,認識公因數和最大公因數,探索求兩個數的最大公因數的方法;認識公倍數和最小公倍數,探索求兩個數的最小公倍數的方法。最后,安排了全單元內容的整理與練習。
三、學情分析
本單元內容是在學生已經認識了億以內的數,以及學習了整數四則運算的基礎上進行教學的。學習本單元內容,又為后續學習分數的基本性質、約分和通分,以及分數四則運算打下基礎。
四、教學目標
1.使學生經歷探索非0自然數的有關特征的活動,知道因數和倍數的含義;能找出100以內某個自然數的所有因數,能在1~100的`自然數中找出10以內某個數的所有倍數;知道2、5和3的倍數的特征,能判斷一個數是不是2、5或3的倍數;了解奇數和偶數、質數和合數的含義,會分解質因數。
2.使學生通過具體的操作和交流活動,認識公因數與最大公因數、公倍數與最小公倍數;會求100以內兩個數的最大公因數和10以內兩個數的最小公倍數。
3.使學生在探索和發現數學知識的過程中,積累數學活動的經驗,培養觀察、比較、分析和歸納的能力,感受一些簡單的數學思想,進一步發展數感。
4.使學生在參與學習活動的過程中,培養主動與他人合作交流的意識,體驗數學學習活動的樂趣,增強對數學學習的自信心。
五、教學重、難點
教學重點:掌握倍數和倍數、質數和合數、最大公因數和最小公倍數等概念的聯系和區別,掌握求兩個數最大公因數和最小公倍數的基本方法。
教學難點:根據數的特點合理靈活地確定兩個數的最大公因數和最小公倍數,以及根據對最大公因數和最小公倍數的理解正確解答相關的實際問題。
六、課時安排
因數和倍數…………………………………………1課時
2和5的倍數的特征………………………………1課時
3的倍數的特征……………………………………1課時
因數和倍數練習……………………………………1課時
質數和和合數………………………………………1課時
分解質因數…………………………………………1課時
公因數和最大公因數………………………………2課時
公倍數和最小公倍數………………………………2課時
因數與倍數整理與練習……………………………2課時
和與積的奇偶性……………………………………1課時
《因數和倍數》數學教案 篇3
教學目標
1、知識與技能
掌握因數、倍數的概念,知道因數、倍數的相互依存關系。
2、過程與方法
通過自主探究,使學生學會用因數、倍數描述兩個數之間的關系。
3、情感態度與價值觀
使學生感悟到數學知識的內在聯系的邏輯之美。
教學重難點
教學重點
掌握找一個數的因數、倍數的方法。
教學難點
能熟練地找一個數的因數和倍數。
教學工具
課件、投影
教學過程
一、遷移引入
同學們,在我們的日常生活中,人與人之間存在著許多相互依存的關系,如:佳爸是佳佳的爸爸,佳佳是佳爸的兒子。其實在我們的數學王國里,數與數回見也存在著這種相互依存的關系,請看大平米,認識這些嗎?(課件出示:0,1,2,3,4,5……)
這些自然數。(課件去“0”)
去0后這又是什么數?(非零自然數中。)這節課我們就在非零自然數中來研究數與數之間的這種相互依存的關系。
板書:因數和倍數
二、情境創設,探究新知
1、理解整除的意義。
(1)出示例1,在前面學習中,我們見過下面的算式。
12÷2=6 8÷3=2……2 30÷6=5 19÷7=2……5 9÷5=1.8
26÷8=3.25 20÷10=2 21÷21=1 63÷9=7
你能把這些算式分類嗎?
(2)分類所得:
第
一
類
12÷2=6 20÷10=2
30÷6=5 21÷21=1
63÷9=7
第
二
類
8÷3=2……2 9÷5=1.8
19÷7=2……5 26÷8=3.25
(3)觀察發現,合作交流。
觀察算式,說一說誰是誰的倍數,誰是誰的約數。
2、理解因數、倍數的意義。
12÷2=6中,我們就說12是2的倍數,2是12的因數。12÷6=2,所以12是6的倍數,6是12的因數。由此可知:(在整數除法中,如果商是整數而沒有余數,我們就說被除數是除數的倍數,除數是被除數的因數。)
3、總結歸納
(1)在整數除法中,如果商是整數而沒有余數,我們就說被除數是除數的倍數,除數是被除數的因數。
(2)因數與倍數是相互依存的關系。
4、注意:
為了方便,在研究因數和倍數的時候,我們所說的數指的是自然數(一般不包括0)。
5、做一做。
下面的4組數中,誰是誰的因數?誰是誰的倍數?
4和24 36÷13 75÷25 81÷9
6、教學例2
18的因數有哪幾個?
18的因數有1、2、3、6、9、18。
也可以這樣用圖表示。
18的因數
1,2,3,
6,9,18
30的因數有哪些?36呢?
7、教學例3
2的倍數有哪些?
2的倍數有2、4、6、8……
2的倍數
2,4,6,
8,10,12,
14,……
3的倍數有哪些?5呢?
8、小組討論,歸納總結
一個數的最小因數是1,最大的因數是它本身。一個數的最小倍數是它本身,沒有最大倍數。
一個數的因數的個數是有限的,一個數的倍數的個數是無限的。
課后小結
一個數的最小因數是有限的,其中最小的因數是1,最大的`因數是它本身。一個數的最小倍數是它本身,沒有最大倍數。
一個數的因數的個數是有限的,最大的因數是它本身。一個數的倍數的個數是無限的。
課后習題
1、填空。
(1)36是4的( )數。
(2)5是25的( )。
(3)2.5是0.5的( )倍。
2、下面各組數中,有因數和倍數關系的有哪些?
(1)18和3 (2)120和60 (3)45和15 (4)33和7
3、24和35的因數都有哪些?
板書
一個數的最小因數是有限的,其中最小的因數是1,最大的因數是它本身。一個數的最小倍數是它本身,沒有最大倍數。
一個數的因數的個數是有限的,最大的因數是它本身。一個數的倍數的個數是無限的。
《因數和倍數》數學教案 篇4
【教學內容】
認識因數和倍數(教材第5頁內容,以及第7頁練習二的第1題)。
【教學目標】
1.從操作活動中理解因數和倍數的意義,會判斷一個數是不是另一個數的因數或倍數。
2.培養學生抽象、概括的能力,滲透事物之間相互聯系、相互依存的辯證唯物主義的觀點。
3.培養學生的合作意識、探索意識,以及熱愛數學學習的情感。
【重點難點】
理解因數和倍數的含義。
【復習導入】
1. 教師用課件出示口算題。
10÷5= 16÷2=
12÷3= 100÷25=
220÷4= 18×4=
25×4= 24×3=
150×4= 20×86=
學生口算
2. 導入:在乘法算式中,兩個因數相乘,得到的結果叫做它們的積。乘法算式表示的是一種相乘的關系,在除法算式中,兩個數相除,得到的結果叫做它們的商。除法算式表示的是一種相除的關系,在整數乘法和除法中還有另一種關系,這就是我們這一節課要學習探討的內容。
(板書課題:因數和倍數(1))
【新課講授】
1.學習因數和倍數的概念
(1)教師用課件出示教材第5頁例1,引導學生觀察圖上的算式,把這些算式分為兩類。
學生說出自己的分類方法,商是整數的分為一類,商不是整數的分為一類。教師以商是整數的第一題為例,板書:12÷2=6。
教師:在這道除法算式中,被除數和除數都是整數,商也是整數,這時我們就可以說12是2和6的倍數,2和6是12的因數。
誰來說一說其他的式子?
學生回答。
教師板書:在整數除法中,如果商是整數而沒有余數,我們就說被除數是除數和商的倍數,除數和商是被除數的因數。
(2)說一說第一類的算式中,誰是誰的因數?誰是誰的倍數?
學生回答,如:在20÷10=2中,20是10和2的倍數,10和2是20的因數。或:20是10的倍數,20是2的倍數,10是20的因數,2是20的因數。
(3)通過剛才同學們的回答,你發現了什么?
學生回答,教師板書:倍數與因數是相互依存的。
2.舉例概括
教師:請同學們注意,為了方便,我們在研究因數和倍數時,所說的數一般指的是自然數,而且其中不包括0。
教師:在自然數中像這樣的例子還有很多,我們每個同學都在心中想一個,想好了說給大家聽。學生舉例,并說出誰是誰的因數,誰是誰的倍數。
教師同時板書。
教師小結:像這樣的例子舉也舉不完,那能不能用比較簡潔的方式來敘述因數與倍數的關系呢?
引導學生根據“用字母表示數”的知識表述因數與倍數的關系。
如:M÷N=P,M、N、P都是非0自然數,那么N和P是M的因數,M是N和P的倍數。
A×B=C,A、B、C、都是非0自然數,那么A和B是C的因數,C是A和B的倍數。
你能從這些數中挑出兩個數,說出誰是誰的因數,誰是誰的倍數嗎?
3、9、15、21、36
學生獨立思考并回答。
【課堂作業】
1.完成教材第5頁“做一做”。
2.完成教材第7頁練習二第1題。
3.下面每一組數中,誰是誰的倍數,誰是誰的因數。16和24和2472和820和5
4.下面的說法對嗎?說出理由。
(1)48是6的倍數。
(2)在13÷4=3……1中,13是4的倍數。
(3)因為3×6=18,所以18是倍數,3和6是因數。
【課堂小結】
我們一起來回憶一下,這節課我們重點研究了一個什么問題?你有什么收獲呢?
【課后作業】
完成練習冊中本課時練習。
因數和倍數(1)
在整數除法中,如果商是整數而沒有余數,我們就說被除數是除數和商的倍數,除數和商是被除數的因數。
因數和倍數一般指的是自然數,而且其中不包括0。
倍數與因數是相互依存的。
本節課的重點是掌握因數和倍數的概念,理解因數和倍數是相互依存的,知識內容比較抽象,知識點比較少,教學中,我采取讓學生反復說,互相說的方式,讓學生加深理解,提高他們自主學習和合作學習的能力。
因數和倍數(2)
【教學內容】
一個數因數的求法和一個數倍數的求法(教材第6頁例2、例3,教材第7~8頁練習二第2~8題)。
【教學目標】
1.通過學習使學生掌握找一個數的因數,倍數的方法;
2.學生能了解一個數的因數是有限的,倍數是無限的;
3.能熟練地找一個數的因數和倍數;
4.在解決問題的過程中,培養學生思維的有序性、條理性,增強學生的探究意識和求索精神。
【重點難點】
掌握找一個數的因數和倍數的方法,能熟練地找一個數的因數和倍數。
【復習導入】
說出下列各式中誰是誰的因數?誰是誰的倍數?
20÷4=5 6×3=18
在上面的算式中,6和3都是18的因數,你知道還有哪些數是18的因數嗎?18是3的倍數, 你知道還有哪些數是3的倍數嗎?這節課我們就來學習如何找一個數的因數和倍數。
(板書課題:因數和倍數(2))
【新課講授】
(一)找因數:
1.出示例1:18的因數有哪幾個?
一個數的因數還不止一個,我們一起找找18的因數有哪些?
學生嘗試完成后匯報
(18的因數有: 1,2,3,6,9,18)教師:說說看你是怎么找的?(生:用整除的方法,18÷1=18,18÷2=9,18÷3=6,18÷4=…;用乘法一對一對找,如1×18=18,2×9=18…)
教師:18的因數中,最小的是幾?最大的是幾?我們在寫的'時候一般都是從小到大排列的。
2.用這樣的方法,請你再找一找36的因數有哪些?
小組合作交流后匯報,36的因數有: 1,2,3,4,6,9,12,18,36
教師:你是怎么找的?
舉錯例(1,2,3,4,6,6,9,12,18,36)
教師:這樣寫可以嗎?為什么?(不可以,因為重復的因數只要寫一個就可以了,所以不需要寫兩個6)
仔細看看,36的因數中,最小的是幾,最大的是幾?
教師板書:一個數的最小因數是1,最大因數是它本身。
3.你還想找哪個數的因數?(18、5、42……)請你選擇其中的一個在自練本上寫一寫,然后匯報。
4.其實寫一個數的因數除了這樣寫以外,還可以用集合表示:如18的因數。小結:我們找了這么多數的因數,你覺得怎樣找才不容易漏掉?
從最小的自然數1找起,也就是從最小的因數找起,一直找到它的本身,找的過程中一對一對找,寫的時候從小到大寫。
(二)找倍數:
1.我們一起找到了18的因數,那2的倍數你能找出來嗎?
小組合作交流后匯報,2的倍數有:2、4、6、8、10、16、……
教師:為什么找不完?
你是怎么找到這些倍數的? (生:只要用2去乘1、乘2、乘3、乘4、…)那么2的倍數最小是幾?最大的你能找到嗎?
2.讓學生完成做一做1、2小題:找3和5的倍數。匯報
3的倍數有:3,6,9,12
教師:這樣寫可以嗎?為什么?應該怎么改呢?
改寫成:3的倍數有:3,6,9,12,……
你是怎么找的?(用3分別乘以1,2,3,……)
5的倍數有:5,10,15,20,……
教師:表示一個數的倍數情況,除了用這種文字敘述的方法外,還可以用集合來表示2的倍數,3的倍數,5的倍數。
教師:我們知道一個數的因數的個數是有限的,那么一個數的倍數個數是怎么樣的呢?
(一個數的倍數的個數是無限的,最小的倍數是它本身,沒有最大的倍數)【課堂作業】
1.完成課本第7頁練習二第2~5題。
2.完成教材第8頁練習二第6~8題。
【課堂小結】我們一起來回憶一下,這節課我們重點研究了一個什么問題?你有什么收獲呢?
【課后作業】
完成練習冊中本課時練習。
因數和倍數(2)
一個數的因數的個數是有限的,,最小的是1,最大的是它本身。
一個數的倍數的個數是無限的,最小的倍數是它本身,沒有最大的倍數。
本節課是在學生認識因數和倍數的基礎上進行教學的,在找一個數的因數時,如何做到既不重復又不遺漏,對于剛剛對因數和倍數有感性認識的學生來說有一定的困難,教學時充分發揮小組學習的優勢,在小組交流的過程中,學生對自己的方法進行反思,吸取同伴的好方法,很好的體現了自主探索和合作交流的教學理念。
《因數和倍數》數學教案 篇5
課前準備
教師準備 多媒體課件
學生準備 100以內的數表
教學過程
⊙談話引入,揭示目標
師:上節課我們把數進行了分類整理,這節課我們就一起來復習因數和倍數的相關知識。
⊙回顧與整理
1.回顧舊知,構建知識網絡。
(1)回顧:因數和倍數這部分知識有哪些概念?
(因數、倍數、質數、合數、奇數、偶數等)
(2)討論:各概念之間的關系是怎樣的?
(組內交流)
(3)梳理:小組合作,用自己喜歡的方法進行知識梳理。
(4)匯報:各自的知識梳理方法。
(課件展示學生的梳理方法,肯定其優點后,引導其完善樹狀知識網絡圖)
2.復習、理解相關概念。
(1)因數和倍數。
①在數學上,關于“因數”和“倍數”是怎么定義的?
[整數A除以整數B(B≠0),除得的商是整數且沒有余數,我們就說整數A能被整數B整除,或者說整數B能整除整數A。
如果整數A能被整數B(B≠0)整除,整數A就叫作整數B的倍數,整數B就叫作整數A的因數。倍數和因數是相互依存的。
如45能被9整除,所以45是9的倍數,9是45的因數]
師:為了方便,在研究因數和倍數時,所說的數指的是非零整數。
②舉例說明因數和倍數各有什么特征。
預設
生1:一個數的因數的個數是有限的,其中最小的是1,最大的是它本身。如20的因數有1,2,4,5,10,20。共6個。
生2:一個數的倍數的個數是無限的,其中最小的是它本身,沒有最大的倍數。如4的.倍數有4,8,12,…
生3:一個數最大的因數等于它最小的倍數。
……
(2)質數與合數。
根據一個數所含因數的個數的不同,還可以得到質數與合數的概念。
①什么是質數?最小的質數是什么?
[一個數,如果只有1和它本身兩個因數,這樣的數叫作質數(或素數),最小的質數是2]
②什么是合數?最小的合數是什么?
(一個數,如果除了1和它本身還有別的因數,這樣的數叫作合數,最小的合數是4)
(3)公因數和公倍數。
①什么叫公因數?什么叫最大公因數?
(幾個數公有的因數,叫作這幾個數的公因數。其中最大的一個叫作這幾個數的最大公因數)
②什么叫公倍數?什么叫最小公倍數?請舉例說明。
預設
生:幾個數公有的倍數,叫作這幾個數的公倍數,其中最小的一個,叫作這幾個數的最小公倍數。如2的倍數有2,4,6,8,10,12,14,16,18,…3的倍數有3,6,9,12,15,18,…其中6,12,18,…是2和3的公倍數,6是它們的最小公倍數。
《因數和倍數》數學教案 篇6
設計說明
1.動手操作,激發學生的學習興趣。
由于數學知識比較抽象,學生不易理解,缺乏興趣,而興趣是學生獲取知識,提高學習質量的動力。對于小學生來說,動手操作是激發學生興趣切實可行的好方法,新課伊始,利用數字卡片組除法算式引入,不僅可以激發學生的學習興趣,同時還能使學生初步感知算式中各數的關系是相互的,為學生探究新知奠定基礎。
2.合作學習,培養合作意識,形成自學能力。
數學教學要緊密聯系學生的生活,創設有助于學生自主學習、合作交流的情境。教學中結合除法算式設計小組同學自學倍數與因數的概念的活動,并通過知識的遷移,要求學生利用18的乘法算式說說誰是18的因數。這樣學生在閱讀、質疑、交流中,逐步形成自學能力,體驗自主學習的快樂。
課前準備
教師準備PPT課件
學生準備數字卡片
教學過程
⊙活動導入
1.用下面的數字卡片組除法算式。(生認真觀察并列出算式)
2.導入:可別小看這些除法算式,今天我們要研究的因數和倍數就在這里。
設計意圖:通過組除法算式,為學生自主建構概念提供準備,同時溝通與新知識的聯系。把學生引入新內容的情境,并讓學生明確本節課的學習目標。
⊙自學因數和倍數的概念
1.學生獨立把上面的算式分類,并閱讀教材5頁的'內容,自學因數和倍數的概念。
2.通過討論明確:
(1)為了方便,在研究因數和倍數的時候,我們所說的數指的是自然數(一般不包括0)。
(2)在這節課我們所說的因數不是以前乘法算式中的因數,二者不能混淆。
3.匯報:
(1)看黑板上的算式,說說誰是誰的因數,誰是誰的倍數。
(2)出示算式c÷a=b,(a,b,c都是不為0的自然數)讓學生說說在這個算式中誰是誰的因數,誰是誰的倍數。
4.強調:因數和倍數是相互依存的。闡述因數和倍數時,一定要說清楚誰是誰的因數,誰是誰的倍數。
⊙探究找一個數的因數和倍數的方法
一、探究找一個數的因數的方法。
1.出示教材6頁例2:18的因數有哪幾個?
(1)提問:怎樣去找18的因數呢?(同桌互相討論,然后匯報)
(2)匯報:第一種方法,列出積是18的乘法算式,得到18的因數有1,2,3,6,9,18;第二種方法,列出被除數是18的除法算式,得到18的因數有1,2,3,6,9,18。
(3)討論:無論是乘法算式還是除法算式,在思考時都要注意什么?(要從最小的數找起,都是非0的自然數)
(4)書寫:在書寫一個數的因數時要注意什么?(要注意一頭一尾地成對寫因數,這樣做不容易漏寫)
(5)介紹集合圖:18的因數也可以像這樣表示,如圖:18的因數
我們稱它為集合圖,這就是用集合圖表示因數的方法。
2.練習。
教材7頁2題(1)。
《因數和倍數》數學教案 篇7
教學內容:
蘇教版義務教育教科書《數學》五年級下冊第30~32頁例1、例2和試一試、例3和試一試練一練,第35頁練習五第1~4題。
教學目標:
1.使學生認識倍數和因數,能判斷兩個自然數間的因數和倍數關系;學會找一個數的因數和倍數的方法,能按順序找出100以內自然數的所有因數,10以內自然數的所有倍數;了解一個數的因數、倍數的特點。
2.使學生經歷探索求一個數的因數或倍數的`方法、一個數的因數和倍數特點的過程,體會數學知識、方法的內在聯系,能有條理地展開思考,培養觀察、比較,以及分析、推理和抽象、概括等思維能力,發展數感。
3.使學生主動參與操作、思考、探索等活動,獲得解決問題的成功感受,樹立學好數學的信心,養成樂于思考、勇于探究等良好品質。
教學重點:
認識因數和倍數。
教學難點:
求一個數的因數、倍數的方法。
教學準備:
小黑板、準備12個同樣大的正方形學具。
教學過程:
一、操作引入,認識意義
1.操作交流。
引導:你能用12個小正方形拼成一個長方形嗎?請同桌兩人合作拼一拼,看看每排擺幾個,擺了幾排,想想有幾種拼法,用算式把你的拼法表示出來。 學生操作,用算式表示,教師巡視。
交流:你有哪些拼法?請你說一說,并交流你表示的算式。
結合學生交流,呈現不同拼法,分別板書出積是12的三道乘法算式(包括可以板書除法算式)。
2.認識意義。
(1)說明:我們先看43=12。根據43-12,我們就可以說:4和3都是12的因數;反過來,12是4的倍數,也是3的倍數。
(2)啟發:現在讓你看另外兩個算式,你能說一說哪個是哪個的因數,哪個是哪個的倍數嗎?同桌互相說說看。
(3) 小結:從上面可以看出,在整數乘法算式里,兩個乘數都是積的因數,積是兩個乘數的倍數。它們之間的關系是相互依存的。這就是我們今天學習的新內容:因數和倍數。(板書課題)在研究因數和倍數時,所說的數一般指不是O的自然數。
《因數和倍數》數學教案 篇8
一、教學內容
1.因數和倍數
2.2、5、3的倍數的特征
3.質數和合數
二、教學目標
1.使學生掌握因數、倍數、質數、合數等概念,知道有關概念之間的聯系和區別。
2.使學生通過自主探索,掌握2、5、3的倍數的特征。
3.逐步培養學生的數學抽象能力。
三、編排特點
精簡概念,減輕學生記憶負擔。
四、方面的調整:
A.不再出現“整除”概念,直接從乘法算式引出因數和倍數的概念。
B.不再正式教學“分解質因數”,只作為閱讀性材料進行介紹。
C.公因數、公因數、公倍數、最小公倍數移至“分數的意義和性質”單元,作為約分和通分的知識基礎,更突出其應用性。
注意體現數學的抽象性。
數論知識本身具有抽象性。學生到了高年級也應注意培養其抽象思維。
五、具體編排
1.因數和倍數
因數和倍數的概念
過去:用÷=表示能被整除,÷=表示能被整除。
現在:用=直接引出因數和倍數的概念。
(1)用2×6=12給出因數和倍數的概念。
(2)用3×4=12進一步鞏固上述概念。
(3)讓學生利用因數和倍數的概念自主發現12的其他因數。
(4)可引導學生利用一般的乘法算式×=歸納出因數和倍數的概念。
(5)說明本單元的研究范圍。
注意以下幾點:
(1)雖然不出現“整除”一詞,但本質上仍是以整除為基礎,因此,乘法算式中的乘數和積都必須是整數。
(2)因數和倍數是一對相互依存的概念,不能單獨存在。
(3)注意區分乘法各部分名稱中的“因數”和本單元中的“因數”的聯系和區別。
(4)注意區分“倍數”與前面學過的“倍”的聯系與區別。
例1(一個數的因數的求法)
(1)可用不同的方法求出18的因數(列出積是18的乘法算式或列出被除數是18的除法算式),但應引導學生有序思考。
(2)用集合圈表示因數,為后面求兩個數的公因數作鋪墊。
一個數的因數的特點
(1)因數是其自身,最小因數是1。
(2)因數個數有限。
(3)此結論通過例1和“做一做”中的特例通過不完全歸納法得出,體現了從具體到一般的思路。
例2(一個數的倍數的求法)
(1)求法:用該數乘任一非0自然數所得的積都是該數的倍數。
(2)用集合圈表示倍數,為后面求兩個數的公倍數作鋪墊。
做一做
與例1結合起來,提供了2、3、5的倍數,為后面探討2、3、5倍數的特征作準備。
一個數的倍數的特點
(1)最小倍數是其自身,沒有的倍數。
(2)因數個數無限。
(3)此結論通過例1和“做一做”中的特例通過不完全歸納法得出,體現了從具體到一般的思路。
2.2、5、3的倍數的特征
因為2、5的倍數的特征在個位數上就體現出來了,而3的倍數涉及到各數位上的數字之和,較為復雜,因此后安排3的倍數的特征。本部分內容對于熟練掌握約分、通分、分數的四則運算有很重要的作用。
2的倍數的特征
(1)從生活情境“雙號”引入。
(2)觀察2的倍數的個位數,總結出2的倍數的特征。
(3)介紹奇數和偶數的概念。
(4)可讓學生隨意找一些數進行驗證,但不要求嚴格的證明。
5的倍數的特征
(1)編排方式與2的倍數的特征類似。
(2)可進一步總結既是2的倍數又是5的倍數的特征,即10的.倍數的特征。
3的倍數的特征
(1)強調自主探索,讓學生經歷觀察――猜想――猜想――再觀察――再猜想――驗證的過程。
(2)可任意選擇一個數,用正面、反面的例子對結論進一步驗證。
(3)也可對任一3的倍數的各位數調換位置,更深刻地理解3的倍數的特征。
3.質數和合數
質數和合數的概念
(1)根據20以內各數的因數個數把數分成三類:1、質數、合數。
(2)可任出一個數,讓學生根據概念判斷其為質數還是合數。
例1(找100以內的質數)
(1)方法多樣。可以根據質數的概念逐個判斷,也可用篩法。
(2)把握教學要求:知道100以內的質數,熟悉20以內的質數。
六、教學建議
1.加強對概念間相互關系的梳理,引導學生從本質上理解概念,避免死記硬背。
從因數和倍數的含義去理解其他的相關概念。
2.要注意培養學生的抽象思維能力。
《因數和倍數》數學教案 篇9
教學內容:
義務教育課程標準小學數學五年級下冊第二章《因數和倍數》第1節例1(教材第13頁)及練習二的第2題,第四題的前部分。
教材分析:
本節教學是在學生學習掌握了因數和倍數兩個概念的基礎上,在教師的引導下,讓學生運用乘法算式及除法中的整除自主嘗試、探究“求一個數的因數”的方法。同時,通過多種形式的訓練,使學生能熟練找全一個數的因數。另外,通過引導學生用集合的形式表示一個數的因數,一方面給學生滲透集合思想,更重要的是為后面教學求兩個數的公因數做準備。
教學目標:
1、應用嘗試教學法鼓勵學生自主嘗試探究求一個數的因數的方法及規律特點,并能熟練找全一個數的因數;
2、逐步培養學生從個別到全體、從具體到一般的抽象歸納的思想方法。
教學重點:
探究求一個數的因數的方法及規律特點。
教學難點:
用求一個數的因數的方法熟練找全一個數的因數。
教具準備:
投影儀、小黑板、卡片
教學課時:一課時
教學設想:
運用嘗試教學法,從學生已有的知識經驗出發,通過教師引導、學生自學例1,自主嘗試、探究求一個數的因數的'方法方法,并能運用所獲得的方法、經驗找全一個數的因數。
教學過程:
一、復習舊知
師:同學們,前面學習了因數和倍數的概念,老師很想考考你們學得怎么樣,可以嗎?
生:(預設)可以!
師:出示小黑板。
1、利用因數和倍數的相互依存關系說一說下面各組數的相互關系。
21和7 2×7=14 30÷6=5
2、判斷。
(1)12是倍數,2是因數。 ( )
(2)1是14的因數,14是1的倍數。 ( )
(3)因為6×0.5=3,所以,6和0.5是3的因數,3是6和0.5的倍數。( )
教師根據學生完成練習的情況對學生進行恰當的表揚激勵,同時進入新課教學:……
二、新課教學
過程一:嘗試訓練。
(一)出示問題
師:同學們,老師有一個新問題,想請大家幫助解決,行嗎?
生:行!(預設)
嘗試題:14的因數有哪幾個?
(二)學生解決問題,教師巡視并根據實際適時輔導學困生。
(三)信息反饋。
板書:
1×14
14 2×7
14÷2
14的因數有:1,2,7,14
過程二:自學課本(P13例1)。
(一)學生自學例1。
教師提出自學要求(投影):
1、18有哪些因數?
2、文中的小朋友是怎樣找出18的因數的?他們找完了嗎?如果沒有,請幫助他們完成。
3、你還有別的找法嗎?請試一試,并用自己喜歡的方式寫出18所有的因數。
(二)信息反饋
1、反饋自學要求情況;
板書:
1×18
18 2×9
3×6
18的因數有1,2,3,6,9,18。
還可以這樣表示: 18的因數
2、知識對比,探索發現規律。
(1)師:同學們,根據求14和18的因數時獲得的體驗,再思考下面問題:
投影出示問題:
思考一:你用什么方法找出?
(2)學生思考,教師適時引導。
(3)同桌交流思考結果。
(4)師生互動。總結方法、點出課題。
求一個數的因數的方法:用乘法計算或除法計算(整除)
過程三:嘗試練習
(一)用小黑板出示練習題
1、找出30的因數有哪些?36的因數有哪些?
2、結合14、18、30、36的因數個數,請你談談一個數的因數有什么特點?〖提示:一個數的最小因數是( ),的因數是( )。〗
(二)信息反饋:師生互動總結特點。
板書:
一個數的因數的個數是有限的。它的最小因數是1,的因數是它本身。
三、課堂作業
練習二第2題和第4題前半部分。
四、課堂延伸
猜一猜:(卡片)只有一個因數的數是誰?
五、課堂小結
師:今天你學會了求一個數的因數的方法嗎?你知道一個數的因數特點嗎?
生:……
板書設計:
求一個數的因數的方法
1×14
14 2×7 方法:用乘法計算或除法計算(整除)
14÷2
14的因數有:1,2,7,14
1×18
18 2×9
3×6
18的因數有:1,2,3,6,9,18 特點:一個數的因數的個數是有限的。
還可以表示為:
它的最小因數是1的因數是它本身。
《因數和倍數》數學教案 篇10
教學目標:
1、學生掌握找一個數的因數,倍數的方法;
2、學生能了解一個數的因數是有限的,倍數是無限的;
3、能熟練地找一個數的因數和倍數;
4、培養學生的觀察能力。
教學重點:
掌握找一個數的因數和倍數的方法。
教學難點:
能熟練地找一個數的因數和倍數。
教學過程:
一、引入新課。
1、出示主題圖,讓學生各列一道乘法算式。
2、師:看你能不能讀懂下面的算式?
出示:因為26=12
所以2是12的因數,6也是12的因數;
12是2的倍數,12也是6的倍數。
3、師:你能不能用同樣的方法說說另一道算式?
(指名生說一說)
師:你有沒有明白因數和倍數的關系了?
那你還能找出12的其他因數嗎?
4、你能不能寫一個算式來考考同桌?學生寫算式。
師:誰來出一個算式考考全班同學?
5、師:今天我們就來學習因數和倍數。(出示課題:因數 倍數)
齊讀p12的注意。
二、新授
(一)找因數
1、出示例1:18的因數有哪幾個?
從12的因數可以看得出,一個數的因數還不止一個,那我們一起找找看18的因數有哪些?
學生嘗試完成:匯報
(18的因數有: 1,2,3,6,9,18)
師:說說看你是怎么找的?(生:用整除的方法,181=18,182=9,183=6,184=;用乘法一對一對找,如118=18,29=18)
師:18的因數中,最小的是幾?最大的是幾?我們在寫的時候一般都是從小到大排列的。
2、用這樣的.方法,請你再找一找36的因數有那些?
匯報36的因數有: 1,2,3,4,6,9,12,18,36
師:你是怎么找的?
舉錯例(1,2,3,4,6,6,9,12,18,36)
師:這樣寫可以嗎?為什么?(不可以,因為重復的因數只要寫一個就可以了,所以不需要寫兩個6)
仔細看看,36的因數中,最小的是幾,最大的是幾?
看來,任何一個數的因數,最小的一定是( ),而最大的一定是( )。
【《因數和倍數》數學教案】相關文章:
《倍數和因數》教學反思10-17
因數和倍數教學反思04-11
倍數和因數教學反思04-22
因數和倍數教學反思通用04-07
《倍數和因數》數學教學反思11-14
因數和倍數公開課教案09-16
因數與倍數教案11-25
因數和倍數教學反思(通用10篇)05-08
五年級下冊因數和倍數教學反思04-13