分數的基本性質教案匯編6篇
在教學工作者開展教學活動前,常常要根據教學需要編寫教案,教案是教學活動的依據,有著重要的地位。那么大家知道正規的教案是怎么寫的嗎?下面是小編為大家整理的分數的基本性質教案6篇,僅供參考,希望能夠幫助到大家。
分數的基本性質教案 篇1
教學內容:人教版五年級數學下冊57頁內容。
教學目標:
知識與能力:使學生理解和掌握分數的基本性質,并能應用這一規律解決簡單的實際問題。
過程與方法:能在觀察、比較、猜想、驗證等學習活動的過程中,有條理、有根據地思考、探究問題,培養學生分析和抽象概括的能力。
情感態度價值觀:體驗數學驗證的思想,培養樂于探究的學習態度。
教學重點:使學生理解和掌握分數的基本性質。
教學難點:運用分數的基本性質解決相關的問題。
教學準備:多媒體課件、正方形紙、直尺、彩筆
教學過程:
一、鋪墊孕伏,溫故遷移
1.比一比:看誰算得又對又快。
2.說一說:商不變的性質是什么?
3.想一想:分數與除法有怎樣的關系?
4.猜一猜:除法中有商不變的規律,分數中是否具有類似的規律?
二、設疑激趣,探究新知
。ㄒ唬┕适录と,引出分數。
說出自己從故事中聽到的分數。
。ǘ┬〗M合作,直觀感知。
1.折一折:拿出三張同樣大小的正方形紙,分別用對折的方法平均分成2份、4份、8份。
2.畫一畫:畫出折痕所在的直線。
3.涂一涂:
。1)給平均分成2份的正方形紙的其中的1份涂上顏色。
。2)給平均分成4份的正方形紙的其中的2份涂上顏色。
。3)給平均分成8份的正方形紙的其中的4份涂上顏色。
4.比一比:比較3張正方形紙涂色部分的大小。
5.議一議:和同伴說說自己的想法。
。ǘ┯^察比較,探究規律。
1.這三個分數的分子、分母都不同,分數的大小卻相等。你能找出它們之間的變化規律嗎?請同學們四人一組,討論這個問題。
2.匯報交流。
3.啟發點撥。
通過從左往右觀察、比較、分析,你發現了什么?
引導學生小結得出:分數的分子、分母同時乘相同的數,分數的大小不變。
那么,從右往左看呢?
讓學生再次歸納:分數的`分子、分母同時除以相同的數,分數的大小不變。
4.歸納小結:引導學生概括出分數的基本性質。
5.啟發思考:這里的“相同的數”可以是任何數嗎?(補充板書:0除外),你能舉例說明嗎?
(三)獨立嘗試,運用規律。
1.學生獨立思考,完成例2。
2.反饋交流,訂正點撥。
3.小結:我們可以運用分數的基本性質把一個分數化成分母不同但大小不變的分數。
三、達標檢測,內化提升(見《達標測試題》)
四、總結收獲,評價激勵
這節課你有什么收獲?你對自己的哪些表現比較滿意?
板書設計:
分數的基本性質
例1:
分數的分子、分母同時乘或者除以相同的數(0除外),分數的大小不變。
例2:
分數的基本性質教案 篇2
教學目標:1,使同學理解分數的基本性質,并會應用分數的基本性質把不同分母的分數化成分母相同而大小不變的分數。
2,培養同學發現問題和解決問題的能力。滲透"事物之間是相互聯系"的辯證唯物主義觀點。
教學重點:掌握分數的基本的性質,能運用分數的基本性質解決有關的問題。
教學難點:理解分數的基本的性質。
教學課型:新授課
教具準備:課件
教學過程:
一,復習鋪墊,準備遷移 [課件1]
1,120÷30的商是多少 被除數和除數都擴大3倍,商是多少被除數和除數都縮小10倍呢
2,比較下列每組數的大小。
3/4( )3/5 15/20( )4/20
3,把下面的分數改寫成兩個數相除的形式。
2/3=( )÷( ) 5/8=( )÷( )
二,探索新知,發展智能
1,同學操作:將手中的紙圓片平均分成若干份。
2,反饋。
。1)提問:A,若要求剪下其中的一半,想想剪下的份數各自占圓的幾分之幾
B,雖然每個同學所剪的份數不同,但它們之間大小關系怎樣
板書: 1/2=2/4=3/6
C,觀察一下:這些分數的分子,分母變化有什么規律
。2)引導同學概括出分數的基本性質,并與前面的猜測相回應。
。3)小結:這里的"相同的`數",是不是任何數都可以呢
。愠猓
板書:分數的分子和分母同時乘上或者除以相同的數(0除外),分數的大小不變。
3,分數的基本性質與商不變的性質的比較。
提問:在除法里有商不變的性質,在分數里有分數的基本性質。想一想:根據分數與除法的關系以和整數除法中商不變的性質,你能說明分數的基本性質嗎
4,鞏固認識。
P109 。1
。2)說數接龍。
5/6=5+5/( )……
三,運用延伸,深化概念
1,要求大小不變。[課件2]
1/3=( )/6 10/15=( )/6 1/4=5/( )
2,下面分數中哪兩個分數相等 [課件3]
3/4 21/32 15/20 1/5 4/20
習后提問:A,依據是什么
B,3/4和1/5哪個大 你是怎么比較出來的
C,那么,從中你又有什么新發現 你的新發現是什么
四,全課總結
提問: A,這節課你學習了什么
B,運用分數的性質,你能做什么
C,本節課你還有哪些疑問 你還想從哪些方面去探索分數
的知識呢
五,家作
P109 。3,5,6
板書設計: 分數的基本性質
1/2=2/4=3/6
分數的分子和分母同時乘上或者除以相同的數(0除外),分數的大小不變。
分數的基本性質教案 篇3
這節課,戴老師教師教態自然、語言清晰、數學語言表述準確。著重培養了學生通過動手操作的活動來讓學生主動探究分數的基本性質,掌握分數的基本性質在生活中的實際應用,同時培養了學生積極參與,團結合作,主動探索,引導觀察鈫捬罷夜媛桑發現規律,我覺得這是一堂充滿生命活力的課堂,能促進學生全面發展的課堂,體現新課標理念的課堂,從中我得到了一些鮮活的經驗和有益的啟示。具體概括以下幾點?
一、教學思路清晰,目標明確,重難點突出。
教師根據教學內容,因材施教地制定了教學思路。這節課以鈥湸瓷棖榫車既胄驢沃傅嘉探索,整個教學思路清晰。這節課戴老師突出培養學生動手操作,主動探究的訓練,通過用三張同樣大的長形紙折一張的、涂色等活動來探索分數分子、分母的變化規律,從而讓學生發現規律,突出重難點的內容,整個教學做到詳略得當,重難點把握準確。這樣設計符合學生年齡特點和認知規律,體現了以學生為主體的學習過程,培養了學生的學習能力?
二、創設情境,重視操作活動,發揮主體作用。
老師能創造機會,讓學生各種感官參與學習,把學生推到主體地位。讓學生獲得豐富感性認識,使抽象知識具體化、形象化。引導學生比較觀察三幅圖的異同之處,分數的分子分母的變化過程,從而證實變化的`規律,整個操作過程層次分明,通過折涂,學生動手、動腦、動口,人人參與學習過程,不是操作而操作,而是把操作,理解概念,讓學生觀察三個圖形來說明概念,降低了難度。通過操作,讓學生既學得高興又充分理解知識。形象直觀地推導了分數的基本性質的概念,這樣概念形成過程十分清晰,充分培養了學生自主探索的能力,把被動地接受知識變為主動地獲取知識,達到教學目的。
三、練習設計具有層次性,開放性。
由淺入深由易到難的設計,既使學生牢固的掌握了所學的知識,鞏固了本節課的基礎知識,又訓練了學生的思維。激發了學生的學習興趣。
分數的基本性質教案 篇4
教材簡析:
分數的基本性質是以分數大小相等這一概念為基礎的。因為分數與整數不同,兩個分數的大小相等,并不意味著兩個分數的分子、分母分別相同。教學時,可引導學生觀察一組相等分數的分子、分母是按什么規律變化的,再結合分數的意義歸納出分數的基本性質。由于分數和整數除法存在著內在聯系,所以分數的基本性質也可以利用整數除法中商不變的性質來說明。
設計理念:
分數的基本性質是約分和通分的基礎,而約分、通分又是分數四則運算的重要基礎,因此,理解分數的基本性質顯得尤為重要。因此我把學生的學習定位在自主建構知識的基礎上,建立了猜想試驗分析合情推理探究創造的教學模式。
在課堂上,我先通過故事讓學生進入情境,然后讓學生去猜想、觀察、試驗、感悟,進而得出結論。當學生得出分數的分子、分母都乘或除以同一個數,分數的大小不變之后,再結合商不變的性質深入理解,把知識融會貫通。整個教學過程注重讓學生經歷了探索知識的過程,使學生知道這些知識是如何被發現的,結論是如何獲得的,體現了方法比知識更重要這一新的教學價值觀,構建了新的教學模式。
《數學課程標準》指出:學生是學習數學的.主人,教師是數學學習的組織者、引導者與合作者。這就要求我們在教學活動中應該為學生提供大量數學活動的機會,讓學生去探索、交流、發現,從而真正落實學生的主體地位。
教學目標:
1、使學生理解和掌握分數的基本性質,能應用性質解決一些簡單問題.
2、培養學生觀察、分析、思考和抽象、概括的能力.
3、滲透形式與實質的辯證唯物主義觀點,使學生受到思想教育.
教學重點:
使學生理解和掌握分數的基本性質,培養學生的抽象、概括的能力。
教學難點:
讓學生自主探索,發現和歸納分數的基本性質,以及應用它解決相關的問題。
教具準備:
每生三張正方形紙
教學方法:
演示法、觀察法、討論法、交流法。
分數的基本性質教案 篇5
教學目的
1.使學生理解和掌握分數的基本性質.
2.培養學生觀察、思考、動手操作和自學能力.
教學過程
一、導入新課.
故事引入:中秋節,媽媽買了一個大西瓜,分給哥哥這個西瓜的 ,(板書: ).
分給組組這個西瓜的 ,(板書: ).分給弟弟這個西瓜的 ,(板書: ).哥哥、姐姐、弟弟三個人,他們誰吃的西瓜多呢?(學生答案不一)
到底誰回答得對呢?上完這節課你們一定能得到準確的答案.
二、新課.
1.實際操作列等式證實兩組分數,每組分數大小相等.
。1)教師講解:請同學們拿出三個大小相等的.圓來,分別用陰影部分表示每個圓的
。ò鍟 )
。2)教師提問:比較一下陰影部分的大小,結果怎樣?
陰影部分相等,說明這三個分數怎樣?
。S著學生回答老師將三個分數用“=”連接)
(3)教師拿出畫著三條數軸的小黑板,講:誰能在三條數軸上標出 ?
。4)教師提問:這三個分數在數軸上所表示的長度怎樣?這又說明了什么?
。S著學生回答老師在三個分數間用“=”連接)
2.初步概括分數基本性質.
。1)觀察兩個等式,每個等式的三個分數什么變了?什么沒變?
。2)同學們從左到右觀察第一個等式,想一下,這三個分數的分子、分母怎樣變化才保證了分數的大小不變.
板書:
(3)誰能用一句話把這個變化規律敘述出來?
板書:分數的分子、分母都乘上同一個數,分數大小不變.
。4)從左到右觀察第二個等式,這三個分數的分子、分母發生了怎樣的變化,才保證了分數大小不變呢?
板書:
。5)問:誰能用一句話把這個變化規律敘述出來?
誰能用一句話把這兩個變化規律敘述出來?
(板書:或除以)
3.完整分數基本性質.
填空:
教師追問:第三題( )里可以填多少個數?第4題呢?
為什么3、4題( )里可以填無數個數?
( )里填任何數都行嗎?哪個數不行?(板書:零除外)
這里為什么必須“零除外”?
教師小結:我們總結的分數的這個變化規律就是“分數的基本性質.
(板書課題:分數基本性質)
4.深入理解分數基本性質.
教師提問:分數的基本性質里哪幾個詞比較重要?
為什么“都”和“相同”很重要?
為什么“分數大小不變”也很重要?
為什么“零除外”也很重要?
三、課堂練習.
1.用直線把相等的分數連接起來.
2.把下列分數按要求分類.
和 相等的分數:
和 相等的分數:
3.判斷下列各題的對錯,并說明理由.
4.填空并說出理由.
5.集體練習.
四、照應課前談話.
問:現在誰知道哥哥、姐姐、弟弟三個人,誰吃的西瓜多呢?
板書:
五、課堂小結.
這節課你有什么收獲?
六、布置作業.
1.指出下面每組中的兩個分數是相等的還是不相等的.
2.在下面的括號里填上適當的數.
分數的基本性質教案 篇6
一、 教材
根據課程標準的要求,基于對教學內容的把握,本課時我確定的教學目標為:
1.理解和掌握分數的基本性質,并會應用分數的基本性質把不同分母的分數化成分母相同而大小不變的分數。
2.通過猜想、驗證、歸納、總結等活動,經歷分數的基本性質的探究過程,體會舉具體事例、數形結合的思考方法,感受抽象、推理的基本數學思想。
3.在自主探究與合作交流的過程中,感受數學知識之間的聯系,激發學生探究學習的興趣。我確定本目標的依據有三點:
一是基于對課程標準的理解。
《義務教育數學課程標準(20xx年版)》在學段目標的第二學段指出學生要“在觀察、實驗、猜想、驗證等活動中,發展合情推理能力,能進行有條理的思考,能比較清楚地表達自己的思考過程”。
二是基于對教材的認識。
《分數的基本性質》是在學生學習了分數的意義、分數與除法的關系、商不變性質等知識的基礎上進行教學的,它是以后學習約分、通分的依據,而約分和通分則是分數四則混合運算的重要基礎,因此,理解分數的基本性質顯得尤為重要。
三是基于對學情的認識。
作為舊課新上,如何讓學生在重新學習的過程中對學習活動任然保持濃厚興趣,從探究活動中得到新的發展,上出數學味,上出新意,我在思考。本節課常規的是創設情境,在情景中提煉出等式,最終形成性質。因此在教學時,我沒有從具體的情境入手,而是從思考一連串的問題開始,通過實驗、猜想、驗證、結論,從等式的驗證上升到規律的發現和歸納,經歷定律由特殊到一般的歸納推理過程,在這個過程中積累數學經驗、滲透數學思想、掌握數學方法。
據此,
我將教學重點確定為:通過猜想、驗證、歸納、總結等活動,讓學生經歷分數的基本性質的探究過程。教學難點確定:理解和掌握分數的基本性質。
二、教法
課程標準指出教師要關注已有的知識經驗及認知水平,發揮組織者、引導者、合作者的作用。本節課我綜合采用了引導發現法、啟發式教學法,直觀演示法,組織學生經歷實驗、猜測、驗證、得出結論的過程。
三、說學法
學生是學習的'主體,學生的學習活動應該是生動的、活潑的、富有個性的,因此,在本節課教學中,我主要采用觀察發現法、動手操作法、舉例驗證法,引導學生靜心傾聽、認真操作、積極思考、大膽表達,通過動手實踐、自主探究、合作交流等多種方式獲得廣泛的數學活動經驗。
四、說教學過程
本著讓學生
“主動參與、樂于探究、學有所得”的理念,結合五年級學生的認知水平和年齡特點,結合教材的編排意圖和學情特點,我設計了如下教學環節:1. 聯系舊知,質疑引思。 2.自主操作,驗證猜想 3.知識應用,鞏固提高4.回顧總結,完善認知。
環節一:聯系舊知,質疑引思。
“疑是思之始,學之端!彼伎歼@樣一連串的問題,目的是喚醒學生已有的知識經驗;迅速地點燃孩子們求知欲望;引發學生的數學思考,為主動探究新知識積聚動力。
環節二:操作體驗,概括規律
1.觀察發現,提出猜想。
通過找與1/2相等的分數,思考證明方法,觀察等式,發現規律,于是提出猜想
2.舉例操作,驗證猜想。
課標指出“學生應當有足夠的時間和空間經歷觀察、實驗、猜測、推理、驗證等活動的過程”。本節課驗證環節,將“分子分母怎樣變才使得分數的大小不變”設定為研究的關鍵點,然后圍繞這一關鍵點讓學生展開了操作、感悟、分析、推理等一系列的數學活動,引導學生通過比較全面的大量的例子來驗證結論,在觀察、實驗、猜測、驗證的活動中發展合情推理能力。讓學生試著用數學的思維去思考,體驗如何運用新舊知識間的聯系和遷移去分析和解決問題,培養學生好學善思的良好品質。
3.概括性質,深化理解
通過觀察算式,經歷由特殊到一般的歸納推理,發現分數的基本性質。
4.運用規律,完成例2
嘗試運用發現的規律,解決問題。
環節三:知識應用,鞏固提高
在有層次的練習過程中,形成技能,發展學生的智力,達成本節課的教學目標,突出重點,突破難點。本節課,我設計了兩個層次的練習。一是點對點的基礎練習,二是靈活運用所學知識解決生活中實際問題。
環節四:回顧總結,完善認知
通過回顧,梳理所學的知識,提煉數學方法,聯系新舊知識,使學生的認知結構得到補充和完善。
有人說的好,教育是一門永無止境的藝術,我知道這節課還有很多不足,懇切的希望各位能給予我更多的寶貴建議,有了你們的幫助我一定收獲更多,成長更快。
【分數的基本性質教案】相關文章:
《分數的基本性質》的教案08-26
分數的基本性質教案01-20
分數的基本性質教案三篇06-06
精選分數的基本性質教案17篇04-03
精選分數的基本性質教案3篇07-17
精選分數的基本性質教案(通用18篇)07-22
【精品】分數的基本性質教案10篇04-14
分數的基本性質教案合集10篇10-11
【推薦】分數的基本性質教案4篇04-08