- 相關推薦
幾何原本讀后感
當閱讀了一本名著后,相信大家都積累了屬于自己的讀書感悟,不能光會讀哦,寫一篇讀后感吧。可能你現在毫無頭緒吧,以下是小編為大家整理的幾何原本讀后感,僅供參考,大家一起來看看吧。
幾何原本讀后感1
“古希臘”這個詞,我們耳熟能詳,很多人卻不了解它。
如果《幾何原本》的作者歐幾里得能夠代表整個古希臘人民,那么我可以說,古希臘是古代文化中最燦爛的一支——因為古希臘的數學中,所包含的不僅僅是數學,還有著難得的邏輯,更有著耐人尋味的哲學。
《幾何原本》這本數學著作,以幾個顯而易見、眾所周知的定義、公設和公理,互相搭橋,展開了一系列的命題:由簡單到復雜,相輔而成。其邏輯的嚴密,不能不令我們佩服。
就我目前拜訪的幾個命題來看,歐幾里得證明關于線段“一樣長”的題,最常用、也是最基本的,便是畫圓:因為,一個圓的所有半徑都相等。一般的數學思想,都是很復雜的,這邊剛講一點,就又跑到那邊去了;而《幾何原本》非常容易就被我接受,其原因大概就在于歐幾里得反復運用一種思想、使讀者不斷接受的'緣故吧。
不過,我要著重講的,是他的哲學。
書中有這樣幾個命題:如,“等腰三角形的兩底角相等,將腰延長,與底邊形成的兩個補角亦相等”,再如,“如果在一個三角形里,有兩個角相等,那么也有兩條邊相等”。這些命題,我在讀時,內心一直承受著幾何外的震撼。
我們七年級已經學了幾何。想想那時做這類證明題,需要證明一個三角形中的兩個角相等的時候,我們總是會這么寫:“因為它是一個等腰三角形,所以兩底角相等”——我們總是習慣性的認為,等腰三角形的兩個底角就是相等的;而看《幾何原本》,他思考的是“等腰三角形的兩個底角為什么相等”。想想看吧,一個思想習以為常,一個思想在思考為什么,這難道還不夠說明現代人的問題嗎?
大多數現代人,好奇心似乎已經泯滅了。這里所說的好奇心不單單是指那種對新奇的事物感興趣,同樣指對平常的事物感興趣。比如說,許多人會問“宇航員在空中為什么會飄起來”,但也許不會問“我們為什么能夠站在地上而不會飄起來”;許多人會問“吃什么東西能減肥”,但也許不會問“羊為什么吃草而不吃肉”。
我們對身邊的事物太習以為常了,以致不會對許多“平!钡氖挛锔信d趣,進而去琢磨透它。牛頓為什么會發現萬有引力?很大一部分原因,就在于他有好奇心。
如果僅把《幾何原本》當做數學書看,那可就大錯特錯了:因為古希臘的數學滲透著哲學,學數學,就是學哲學。
哲學第一課:人要建立好奇心,不僅探索新奇的事物,更要探索身邊的平常事,這就是我讀《幾何原本》意外的收獲吧!
幾何原本讀后感2
古希臘大數學家歐幾里德是與他的巨著——《幾何原本》一起名垂千古的。這本書是世界上最著名、最完整而且流傳最廣的數學著作,也是歐幾里德最有價值的一部著作,在《原本》里,歐幾里德系統地總結了古代勞動人民和學者們在實踐和思考中獲得的幾何知識,歐幾里德把人們公認的一些事實列成定義和公理,以形式邏輯的方法,用這些定義和公理來研究各種幾何圖形的性質,從而建立了一套從公理、定義出發,論證命題得到定理得幾何學論證方法,形成了一個嚴密的邏輯體系——幾何學。而這本書,也就成了歐式幾何的奠基之作。
兩千多年來,《幾何原本》一直是學習幾何的主要教材。哥白尼、伽利略、笛卡爾、牛頓等許多偉大的學者都曾學習過《幾何原本》,從中吸取了豐富的營養,從而作出了許多偉大的成就。
從歐幾里得發表《幾何原本》到現在,已經過去了兩千多年,盡管科學技術日新月異,由于歐氏幾何具有鮮明的直觀性和有著嚴密的邏輯演繹方法相結合的特點,在長期的實踐中表明,它巳成為培養、提高青少年邏輯思維能力的好教材。歷史上不知有多少科學家從學習幾何中得到益處,從而作出了偉大的貢獻。
少年時代的牛頓在劍橋大學附近的夜店里買了一本《幾何原本》。開始他認為這本書的內容沒有超出常識范圍,因而并沒有認真地去讀它,而對笛卡兒的`“坐標幾何”很感興趣而專心攻讀,后來,牛頓于1664年4月在參加特列臺獎學金考試的時候遭到落選,當時的考官巴羅博士對他說:“因為你的幾何基礎知識太貧乏,無論怎樣用功也是不行的。”這席談話對牛頓的震動很大,于是,牛頓又重新把《幾何原本》從頭到尾地反復進行了深入鉆研,為以后的科學工作打下了堅實的數學基礎。
但是,在人類認識的長河中,無論怎樣高明的前輩和名家。都不可能把問題全部解決。由于歷史條件的限制,歐幾里得在《幾何原本》中提出幾何學的“根據”問題并沒有得到徹底的解決,他的理論體系并不是完美無缺的。比如,對直線的定義實際上是用一個未知的定義來解釋另一個未知的定義,這樣的定義不可能在邏輯推理中起什么作用。又如,歐幾里得在邏輯推理中使用了“連續”的概念,但是在《幾何原本》中從未提到過這個概念。
幾何原本讀后感3
徐光啟(公元1562—1633年)字子先,號玄扈,吳淞(今屬上海)人。他從萬歷末年起,經過天啟、崇禎各朝,曾作到文淵閣大學士的官職(相當于宰相)。他精通天文歷法,是明末改歷的主要主持人。他對農學也頗有研究,曾根據前人所著各種農書,附以自己的見解,編寫了著名的《農政全書》,全書有六十余卷,共六十多萬字。明朝末年,滿族的統治階級從東北關外屢次發動戰爭,徐光啟曾屢次上書論軍事,并在通州練新兵,主張采用西方火炮。他是一位熱愛祖國的科學家。
他沒有入京做官之前,曾在上海、廣東、廣西等地教書。在此期間,他曾博覽群書,在廣東還接觸到一些傳教士,對他們傳入的西方文化開始有所接觸。公元1600年,他在南京和利瑪竇相識,以后兩人又長期同住在北京,經常來往。他和利瑪竇兩人共同譯《幾何原本》一書,1607年譯完前六卷。當時徐光啟很想全部譯完,利瑪竇卻不愿這樣做。直到晚清時代,《幾何原本》后九卷的翻譯工作才由李善蘭(公元1811—1882年)完成。
《幾何原本》是我國最早第一部自拉丁文譯來的數學著作。在翻譯時絕無對照的`詞表可循,許多譯名都從無到有,當時創造的。毫無疑問,這是需要精細研究煞費苦心的。這個譯本中的許多譯名都十分恰當,不但在我國一直沿用至今,并且還影響了日本、朝鮮各國。如點、線、直線、曲線、平行線、角、直角、銳角、鈍角、三角形、四邊形……這許多名詞都是由這個譯本首先定下來的。其中只有極少的幾個經后人改定,如“等邊三角形”,徐光啟當時記作“平邊三角形”;“比”,當時譯為“比例”;而“比例”則譯為“有理的比例”等等。
《幾何原本》有嚴整的邏輯體系,其敘述方式和中國傳統的《九章算術》完全不同。徐光啟對《幾何原本》區別于中國傳統數學的這種特點,有著比較清楚的認識。他還充分認識到幾何學的重要意義,他說“竊百年之后,必人人習之”。
清康熙帝時,編輯數學百科全書《數理精蘊》(公元1723年),其中收有《幾何原本》一書,但這是根據公元十八世紀法國幾何學教科書翻譯的,和歐幾里得的《幾何原本》差別很大。
到清朝末年廢科舉、興學堂之后,幾何學方成為學校中必修科目之一。到這時才出現了徐光啟所預料的“必人人而習之”的情況。
幾何原本讀后感4
《幾何原本》是古希臘數學家歐幾里得的一部不朽之作,集整個古希臘數學的成果和精神于一身。既是數學巨著,也是哲學巨著,并且第一次完成了人類對空間的認識。該書自問世之日起,在長達兩千多年的時間里,歷經多次翻譯和修訂,自1482年第一個印刷本出版,至今已有一千多種不同版本。
除《圣經》以外,沒有任何其他著作,其研究、使用和傳播之廣泛能夠和《幾何原本》相比。漢語的最早譯本是由意大利傳教士利瑪竇和明代科學家徐光啟于1607年合作完成的,但他們只譯出了前六卷。證實這個殘本斷定了中國現代數學的基本術語,諸如三角形、角、直角等。日本、印度等東方國家皆使用中國譯法,沿用至今。近百年來,雖然大陸的中學課本必提及這一偉大著作,但對中國讀者來說,卻無緣一睹它的全貌,納入家庭藏書更是妄想。
徐光啟在譯此作時,對該書有極高的評價,他說:“能精此書者,無一事不可精;好學此書者,無一事不科學!爆F代科學的'奠基者愛因斯坦更是認為:如果歐幾里得未能激發起你少年時代的科學熱情,那你肯定不會是一個天才的科學家。由此可見,《幾何原本》對人們理性推演能力的影響,即對人的科學思想的影響是何等巨大。在高等數學中,有正交的概念,最早的概念起源應該是畢達哥拉斯定理,我們稱之為勾股定理,只是勾3股4弦5是一種特例,而畢氏定理對任意直角三角形都成立。并由畢氏定理,發現了無理數根號2。在數學方法上初步涉及演繹法,又在證明命題時用了歸謬法(即反證法)。可能由于受丟番圖(Diophantus)對一個平方數分成兩個平方數整數解的啟發,350多年前,法國數學家費馬提出了著名的費馬大定理,吸引了歷代數學家為它的證明付出了巨大的努力,有力地推動了數論用至整個數學的進步。1994年,這一曠世難題被英國數學家安德魯威樂斯解決。
多少年來,千千萬萬人(著名的有牛頓(Newton)、阿基米德(Archimedes)等)通過歐幾里得幾何的學習受到了邏輯的訓練,從而邁入科學的殿堂。
幾何原本讀后感5
在文藝復興以后的歐洲,代數學由于受到阿拉伯的影響而迅速發展。另一方面,17世紀以后,數學分析的發展非常顯著。因此,幾何學也擺脫了和代數學相隔離的狀態。正如在其名著《幾何學》中所說的一樣,數與圖形之間存在著密切的關系,在空間設立坐標,而且以數與數之間關系來表示圖形;反過來,可把圖形表示成為數與數之間的關系。這樣,按照坐標把圖形改成數與數之間的關系問題而對之進行處理,這個方法稱為解析幾何。恩格斯在其《自然辯證法》中高度評價了笛卡兒的工作,他指出:“數學中的轉折點是笛卡兒的變數,有了變數,運動進入了數學,有了變數,辯證法進入了數學,有了變數,微分和積分也就成為必要的了,……”
事實上,笛卡兒的思想為17世紀數學分析的發展提供了有力的基礎。到了18世紀,解析幾何由于L.歐拉等人的開拓得到迅速的發展,連希臘時代的阿波羅尼奧斯(約公元前262~約前190)等人探討過的圓錐曲線論,也重新被看成為二次曲線論而加以代數地整理。另外,18世紀中發展起來的數學分析反過來又被應用到幾何學中去,在該世紀末期,G.蒙日首創了數學分析對于幾何的'應用,而成為微分幾何的先驅者。 如上所述,用解析幾何的方法可以討論許多幾何問題。但是不能說,這對于所有問題都是最適用的。同解析幾何方法相對立的,有綜合幾何或純粹幾何方法,它是不用坐標而直接考察圖形的方法,數學家歐幾里得幾何本來就是如此。射影幾何是在這思想方法指導下的產物。
早在文藝復興時期的意大利盛行而且發展了造型美術,與它隨伴而來的有所謂透視圖法的研究,當時有過許多人包括達·芬奇在內把這個透視圖法作為實用幾何進行了研究。從17世紀起,G.德扎格、B.帕斯卡把這個透視圖法加以推廣和發展,從而奠定了射影幾何。分別以他們命名的兩個定理,成了射影幾何的基礎。其一是德扎格定理:如果平面上兩個三角形的對應頂點的連線相會于一點,那么它們的對應邊的交點在一直線上;而且反過來也成立。其二是帕斯卡定理:如果一個六角形的頂點在同一圓錐曲線上,那么它的三對對邊的交點在同一直線上;而且反過來也成立。18世紀以后,J.-V.彭賽列、Z.N.M.嘉諾、J.施泰納等完成了這門幾何學。
幾何原本讀后感6
讀《幾何原本》的作者數學家歐幾里得能夠代表整個古希臘人民,那么我可以說,古希臘是古代文化中最燦爛的一支——因為古希臘的數學中,所包含的不僅僅是數學,還有著難得的邏輯,更有著耐人尋味的哲學……
《幾何原本》這本數學著作,以幾個顯而易見、眾所周知的定義、公設和公理,互相搭橋,展開了一系列的命題:由簡單到復雜,相輔而成。其邏輯的嚴密,不能不令我們佩服。
就我目前拜訪的幾個命題來看,數學家歐幾里得證明關于線段“一樣長”的題,最常用、也是最基本的,便是畫圓:因為,一個圓的所有半徑都相等。一般的數學思想,都是很復雜的,這邊剛講一點,就又跑到那邊去了;而《幾何原本》非常容易就被我接受,其原因大概就在于數學家歐幾里得反復運用一種思想、使讀者不斷接受的緣故吧。
不過,我要著重講的,是他的哲學。
書中有這樣幾個命題:如,“等腰三角形的兩底角相等,將腰延長,與底邊形成的兩個補角亦相等”,再如,“如果在一個三角形里,有兩個角相等,那么也有兩條邊相等”,這些命題,我在讀時,內心一直承受著幾何外的.震撼。
我們七年級已經學了幾何。想想那時做這類證明題,需要證明一個三角形中的兩個角相等的時候,我們總是會這么寫:“因為它是一個等腰三角形,所以兩底角相等”——我們總是習慣性的認為,等腰三角形的兩個底角就是相等的;而看《幾何原本》,他思考的是“等腰三角形的兩個底角為什么相等”。想想看吧,一個思想習以為常,一個思想在思考為什么,這難道還不夠說明現代人的問題嗎? 大多數現代人,好奇心似乎已經泯滅了。這里所說的好奇心不單單是指那種對新奇的事物感興趣,同樣指對平常的事物感興趣。比如說,許多人會問“宇航員在空中為什么會飄起來”,但也許不會問“我們為什么能夠站在地上而不會飄起來”;許多人會問“吃什么東西能減肥”,但也許不會問“羊為什么吃草而不吃肉”。
我們對身邊的事物太習以為常了,以致不會對許多“平!钡氖挛锔信d趣,進而去琢磨透它。牛頓為什么會發現萬有引力?很大一部分原因,就在于他有好奇心。
如果僅把《幾何原本》當做數學書看,那可就大錯特錯了:因為古希臘的數學滲透著哲學,學數學,就是學哲學。
哲學第一課:人要建立好奇心,不僅探索新奇的事物,更要探索身邊的平常事,這就是我讀《幾何原本》意外的收獲吧!
幾何原本讀后感7
古希臘大數學家歐幾里德是和他的巨著——《幾何原本》一起名垂千古的。這本書是世界上最著名、最完整而且流傳最廣的數學著作,也是歐幾里德最有價值的一部著作。在《原本》里,歐幾里德系統地總結了古代勞動人民和學者們在實踐和思考中獲得的幾何知識,歐幾里德把人們公認的一些事實列成定義和公理,以形式邏輯的方法,用這些定義和公理來研究各種幾何圖形的性質,從而建立了一套從公理、定義出發,論證命題得到定理得幾何學論證方法,形成了一個嚴密的邏輯體系——幾何學。而這本書,也就成了歐式幾何的奠基之作。
兩千多年來,《幾何原本》一直是學習幾何的主要教材。哥白尼、伽利略、笛卡爾、牛頓等許多偉大的學者都曾學習過《幾何原本》,從中吸取了豐富的營養,從而作出了許多偉大的成就。
從歐幾里得發表《幾何原本》到現在,已經過去了兩千多年,盡管科學技術日新月異,由于歐氏幾何具有鮮明的直觀性和有著嚴密的邏輯演繹方法相結合的`特點,在長期的實踐中表明,它巳成為培養、提高青少年邏輯思維能力的好教材。歷史上不知有多少科學家從學習幾何中得到益處,從而作出了偉大的貢獻。
少年時代的牛頓在劍橋大學附近的夜店里買了一本《幾何原本》,開始他認為這本書的內容沒有超出常識范圍,因而并沒有認真地去讀它,而對笛卡兒的“坐標幾何”很感興趣而專心攻讀。后來,牛頓于1664年4月在參加特列臺獎學金考試的時候遭到落選,當時的考官巴羅博士對他說:“因為你的幾何基礎知識太貧乏,無論怎樣用功也是不行的!
這席談話對牛頓的震動很大。于是,牛頓又重新把《幾何原本》從頭到尾地反復進行了深入鉆研,為以后的科學工作打下了堅實的數學基礎。
但是,在人類認識的長河中,無論怎樣高明的前輩和名家,都不可能把問題全部解決。由于歷史條件的限制,歐幾里得在《幾何原本》中提出幾何學的“根據”問題并沒有得到徹底的解決,他的理論體系并不是完美無缺的。比如,對直線的定義實際上是用一個未知的定義來解釋另一個未知的定義,這樣的定義不可能在邏輯推理中起什么作用。又如,歐幾里得在邏輯推理中使用了“連續”的概念,但是在《幾何原本》中從未提到過這個概念。
幾何原本讀后感8
讀《幾何原本》的作者歐幾里得能夠代表整個古希臘人民,那么我可以說,古希臘是古代文化中最燦爛的一支——因為古希臘的數學中,所包含的不僅僅是數學,還有著難得的邏輯,更有著耐人尋味的哲學。
《幾何原本》這本數學著作,以幾個顯而易見、眾所周知的定義、公設和公理,互相搭橋,展開了一系列的命題:由簡單到復雜,相輔而成。其邏輯的嚴密,不能不令我們佩服。
就我目前拜訪的幾個命題來看,歐幾里得證明關于線段“一樣長”的題,最常用、也是最基本的,便是畫圓:因為,一個圓的所有半徑都相等。一般的數學思想,都是很復雜的,這邊剛講一點,就又跑到那邊去了;
而《幾何原本》非常容易就被我接受,其原因大概就在于歐幾里得反復運用一種思想、使讀者不斷接受的緣故吧。
不過,我要著重講的,是他的哲學。
書中有這樣幾個命題:如,“等腰三角形的兩底角相等,將腰延長,與底邊形成的兩個補角亦相等”,再如,“如果在一個三角形里,有兩個角相等,那么也有兩條邊相等”。
這些命題,我在讀時,內心一直承受著幾何外的震撼。
我們七年級已經學了幾何。想想那時做這類證明題,需要證明一個三角形中的兩個角相等的時候,我們總是會這么寫:“因為它是一個等腰三角形,所以兩底角相等”——我們總是習慣性的認為,等腰三角形的兩個底角就是相等的;
而看《幾何原本》,他思考的是“等腰三角形的兩個底角為什么相等”。
想想看吧,一個思想習以為常,一個思想在思考為什么,這難道還不夠說明現代人的問題嗎?
大多數現代人,好奇心似乎已經泯滅了。這里所說的.好奇心不單單是指那種對新奇的事物感興趣,同樣指對平常的事物感興趣。
比如說,許多人會問“宇航員在空中為什么會飄起來”,但也許不會問“我們為什么能夠站在地上而不會飄起來”;
許多人會問“吃什么東西能減肥”,但也許不會問“羊為什么吃草而不吃肉”。
我們對身邊的事物太習以為常了,以致不會對許多“平!钡氖挛锔信d趣,進而去琢磨透它。牛頓為什么會發現萬有引力?很大一部分原因,就在于他有好奇心。
如果僅把《幾何原本》當做數學書看,那可就大錯特錯了:因為古希臘的數學滲透著哲學,學數學,就是學哲學。
哲學第一課:人要建立好奇心,不僅探索新奇的事物,更要探索身邊的平常事,這就是我讀《幾何原本》意外的收獲吧!
幾何原本讀后感9
在文藝復興以后的歐洲,代數學由于受到阿拉伯的影響而迅速發展。另一方面,17世紀以后,數學分析的發展非常顯著。因此,幾何學也擺脫了和代數學相隔離的狀態。正如在其名著《幾何學》中所說的一樣,數與圖形之間存在著密切的關系,在空間設立坐標,而且以數與數之間關系來表示圖形;反過來,可把圖形表示成為數與數之間的關系。這樣,按照坐標把圖形改成數與數之間的關系問題而對之進行處理,這個方法稱為解析幾何。恩格斯在其《自然辯證法》中高度評價了笛卡兒的工作,他指出:“數學中的轉折點是笛卡兒的變數,有了變數,運動進入了數學,有了變數,辯證法進入了數學,有了變數,微分和積分也就成為必要的'。了……”
事實上,笛卡兒的思想為17世紀數學分析的發展提供了有力的基礎。到了18世紀,解析幾何由于L。歐拉等人的開拓得到迅速的發展,連希臘時代的阿波羅尼奧斯(約公元前262~約前190)等人探討過的圓錐曲線論,也重新被看成為二次曲線論而加以代數地整理。另外,18世紀中發展起來的數學分析反過來又被應用到幾何學中去,在該世紀末期,G。蒙日首創了數學分析對于幾何的應用,而成為微分幾何的先驅者。如上所述,用解析幾何的方法可以討論許多幾何問題。但是不能說,這對于所有問題都是最適用的。同解析幾何方法相對立的,有綜合幾何或純粹幾何方法,它是不用坐標而直接考察圖形的方法,數學家歐幾里得幾何本來就是如此。射影幾何是在這思想方法指導下的產物。
早在文藝復興時期的意大利盛行而且發展了造型美術,與它隨伴而來的有所謂透視圖法的研究,當時有過許多人包括達·芬奇在內把這個透視圖法作為實用幾何進行了研究。從17世紀起,G。德扎格、B。帕斯卡把這個透視圖法加以推廣和發展,從而奠定了射影幾何。分別以他們命名的兩個定理,成了射影幾何的基礎。其一是德扎格定理:如果平面上兩個三角形的對應頂點的連線相會于一點,那么它們的對應邊的交點在一直線上;而且反過來也成立。其二是帕斯卡定理:如果一個六角形的頂點在同一圓錐曲線上,那么它的三對對邊的交點在同一直線上;而且反過來也成立。18世紀以后,J!猇。彭賽列、Z。N。M。嘉諾、J。施泰納等完成了這門幾何學。
【幾何原本讀后感】相關文章:
《幾何原本》讀后感05-01
《幾何原本》讀后感范文04-21
怎樣學好初中幾何06-03
利用幾何圖形構圖06-03
有趣的幾何圖形教案05-30
立體幾何教學反思01-04
雙曲線的幾何性質教案11-15
班級管理中的幾何原則04-20
藍色幾何美甲教程04-19
幾何構圖的3個小技巧06-03