免费无码作爱视频,女厕厕露p撒尿八个少妇,精品人妻av区乱码,国产aⅴ爽av久久久久久

正比例教案

時間:2024-08-30 08:52:38 教案 我要投稿

正比例教案

  作為一名教學工作者,就不得不需要編寫教案,教案是備課向課堂教學轉化的關節(jié)點。如何把教案做到重點突出呢?下面是小編整理的正比例教案,僅供參考,歡迎大家閱讀。

正比例教案

正比例教案1

  教學內容:

  成正比例的量

  教學目標:

  1、使學生理解正比例的意義,會正確判斷成正比例的量。

  2、使學生了解表示成正比例的量的圖像特征,并能根據(jù)圖像解決有關簡單問題。

  教學重點:

  正比例的意義。

  教學難點:

  正確判斷兩個量是否成正比例的關系。

  教具準備:

  媒體課件

  教學過程:

  一、揭示課題

  1、在現(xiàn)實生活中,我們常常遇到兩種相關聯(lián)的量的變化情況,其中一種量變化,另一種量也隨著變化,你能舉出一些這樣的例子嗎?

  在教師的指導下,學生會舉出一些簡單的例子,如

  (1)班級人數(shù)多了,課桌椅的數(shù)量也變多了;人數(shù)少了,課桌椅也少了。

  (2)送來的牛奶包數(shù)多了,牛奶的總質量也多了;包數(shù)少了,總質量也少了。

  (3)上學時,去的速度快了,時間用少了;速度慢了,時間用多了。

  (4)排隊時,每行人數(shù)少了,行數(shù)就多了;每行人數(shù)多了。行數(shù)就少了。

  2、這種變化的量有什么規(guī)律?存在什么關系呢?今天,我們首先來學習成正比例的量。板書:成正比例的量

  二、探索新知

  1、教學例1

  (1)出示例題情境圖。

  問:你看到了什么?生

  杯子是相同的。杯中水的高度不同,水的體積也不同,高度越高體積越大;高度越低,體積越小。

  (2)出示表格。

  高度/㎝ 2 4 6 8 10 12

  體積/㎝3 50 100 150 200 250 300

  底面積/㎝2

  問:你有什么發(fā)現(xiàn)?

  學生不難發(fā)現(xiàn):杯子的底面積不變,是25㎝2。

  板書

  教師:體積與高度的比值一定。

  (2)說明正比例的意義。

  ①在這一基礎上,教師明確說明正比例的意義。

  因為杯子的底面積一定,所以水的體積隨著高度的變化而變化。水的高度增加,體積也相應增加,水的高度降低,體積也相應減少,而且水的體積和高度的比值一定。

  像這樣,兩種相關聯(lián)的量,一種量變化,另一種子量也隨著變化,如果這兩種量中相對應的兩個數(shù)的比值一定,這兩種量就叫做成正比例的量,它們的關系叫做正比例關系。

  ②學生讀一讀,說一說你是怎么理解正比例關系的。

  要求學生把握三個要素

  第一,兩種相關聯(lián)的量;

  第二,其中一個量增加,另一個量也增加;一個量減少,另一個量也減少。

  第三,兩個量的比值一定。

  (三要素可再省略:1.相關聯(lián);2.同時變化;3.比值一定)

  (3)用字母表示。

  如果用字母X和Y表示兩種相關聯(lián)的量,用K表示它們的比值(一定),比例關系可以用正的式子表示:Y/X=K(一定)

  (4)想一想

  師:生活中還有哪些成正比例的量?

  學生舉例說明。如

  長方形的寬一定,面積和長成正比例。

  每袋牛奶質量一定,牛奶袋數(shù)和總質量成正比例。

  衣服的'單價一不定期,購買衣服的數(shù)量和應付錢數(shù)成正比例。

  地磚的面積一定,教室地板面積和地磚塊數(shù)成正比例。

  2、教學例2。

  (1)出示表格(見書)

  (2)依據(jù)下表中的數(shù)據(jù)描點。(見書)

  (3)從圖中你發(fā)現(xiàn)了什么?

  這些點都在同一條直線上。

  (4)看圖回答問題。

  ①如果杯中水的高度是7㎝,那么水的體積是多少?

  生:175㎝3。

  ②體積是225㎝3的水,杯里水面高度是多少?

  生:9㎝。

  ③杯中水的高度是14㎝,那么水的體積是多少?描出這一對應的點是否在直線上?

  生:水的體積是350㎝3,相對應的點一定在這條直線上。

  (5)你還能提出什么問題?有什么體會?

  通過交流使學生了解成正比例量的圖像特征。

  3、做一做。

  過程要求

  (1)讀一讀表中的數(shù)據(jù),寫出幾組路程和時間的比,說一說比值表示什么?

  比值表示每小時行駛多少千米。(速度)

  (2)表中的路程和時間成正比例嗎?為什么?

  成正比例。理由

  ①路程隨著時間的變化而變化;

  ②時間增加,路程也增加,時間減少,路程也隨著減少;

  ③種程和時間的比值(速度)一定。

  (3)在圖中描出表示路程和時間的點,并連接起來。有什么發(fā)現(xiàn)?所描的點在一條直線上。

  (4)行駛120KM大約要用多少時間?指導學生估算的方法

  (5)你還能提出什么問題?

  4、課堂小結

  說一說成正比例關系的量的變化特征。

  學生回答成正比例的理由時,語言表述不清楚,要注意引導學生按照正比例中的三要素來回答

  三、鞏固練習

  完成課文練習七第1~5題。

  練習補充,可以從中挑選有關正比例的練習,其它可等學習反比例后再做。

  板書設計:

  成正比例的量

  相關聯(lián);同時變化;比值一定

  x×y=k(定值)

  教學反思:

  反思的第(1)個問題是:什么樣的兩種量叫做相關聯(lián)的量,資料上解釋:一種量變化,另一種量也隨著變化,那么一個人的身高和體重算不算兩種相關聯(lián)的量?第(2)個問題是:類型過于多,到底怎么幫助學生整理方法。一節(jié)課的學習孩子們基本上理解了正比例的意義,但是對于判斷兩個量是否成正比例孩子們還是感到困難,在這個環(huán)節(jié)的教學上我處理的不夠好。我要再去請教其他老師,吃透這個知識。幫助孩子們更好的理解。

正比例教案2

  教學目標

  知識與技能:

  1、能用描點法畫出正比例函數(shù)的圖象;

  2、初步了解正比例函數(shù)圖象的性質。

  過程與方法:

  通過畫正比例函數(shù)的圖象,探索正比例函數(shù)圖象的性質,培養(yǎng)觀察能力,體會用數(shù)形結合的方式思考問題。

  情感態(tài)度與價值觀:

  通過動手操作,培養(yǎng)嚴謹?shù)膶W習態(tài)度,并養(yǎng)成善于觀察、善于歸納的學習習慣。

  重點:正確理解正比例函數(shù)的圖象及其性質。

  難點:通過對正比例函數(shù)圖象的觀察,發(fā)現(xiàn)正比例函數(shù)圖象的性質。

  教學方法:

  1、演示法———發(fā)展觀察力,想象力;

  2、啟發(fā)法———培養(yǎng)學生主動學習能力;

  3、形成性學習法———培養(yǎng)觀察、歸納思維能力;

  教學流程

  教學環(huán)節(jié):

  教師活動——預設學生行為——學生活動

  復

  復習定義及畫函數(shù)圖像的步驟,學生快速回憶已學的概念及畫函數(shù)圖像的步驟(搶答),積極回答問題。

  例

  1、在同一坐標系中畫出正比例函數(shù),y=x,y=2x的圖象

  解:(1)列表

  (2)描點

  (3)連線

  x … —3 —2 —1 0 1 2 3 …

  y=x y=2x仔細觀察,認真分析,各自說出自己所發(fā)現(xiàn)的規(guī)律,最后達成共識。

  計算出正比例函數(shù)的值,認真觀察圖象。

  發(fā)現(xiàn)規(guī)

  觀察思考:比較上面三個函數(shù)圖象的相同點與不同點,三個函數(shù)圖像有怎樣的變化規(guī)律。

  共同點:

  (1)都是比例系數(shù)k>0

  (2)都是一條直線

  (3)都過原點和點(1,k)

  (4)都在一、三象限

  (5)都是從左向右上升

  不同點:上升的幅度不一樣

  歸納總結:

  一般地,正比例函數(shù)y=kx(k是常數(shù),k≠0)的圖象是一條經過原點及(1,k)直線,我們稱它為直線y=kx。當k>0時,直線y=kx經過第一、三象限,從左向右上升,即隨x的增大y也增大;

  根據(jù)同學的發(fā)言與老師的歸納,修正自己的認識,逐漸理解正比例函數(shù)的性質以及畫正比例函數(shù)圖象的簡單方法。發(fā)現(xiàn)正比例函數(shù)的性質。

  規(guī)

  應用兩點法在同一坐標系中畫出y=—1、5x,y=—4x的圖象,利用兩點法畫出函數(shù)圖象,能迅速找到兩個點。

  發(fā)現(xiàn)規(guī)

  觀察思考:比較上面二個函數(shù)圖象的相同點與不同點,二個函數(shù)圖像有怎樣的變化規(guī)律。

  共同點:

  (1)都是比例系數(shù)k<0

  (2)都是一條直線

  (3)都過原點和點(1,k)

  (4)都在二、四象限

  (5)都是從左向右下降

  不同點:下降的幅度不一樣

  歸納總結:

  一般地,正比例函數(shù)y=kx(k是常數(shù),k≠0)的圖象是一條經過原點及(1,k)直線,我們稱它為直線y=kx。當k<0時,直線y=kx經過第二、四象限,從左向右下降,即隨x的增大y反而減小;

  知識的遷移:用同樣的'辦法發(fā)現(xiàn)規(guī)律。

  課

  1、用你認為最簡單的方法畫出下列函數(shù)圖象。

  (1)y=1、5x(2)y=-3x

  2、正比例函數(shù)y=-4x的圖象是過()和()兩點的一條直線,圖象過象限,y隨x的。

  3、正比例函數(shù)y=(m-1)x的圖象過一、三象限,則m的取值范圍是。

  A、m=1

  B、m>1

  C、m<1

  D、m≥1

  4、下列函數(shù)①y=5x ② y=-3x ③y= x ④y=-x中,y隨x的增大而減小的是_____________。

  (能根據(jù)正比例函數(shù)性質解決問題、認真做題)

  小

  名稱 解析式 圖象特征 圖象分布 函數(shù)變化情況 正比例函數(shù)

  y=kx(k≠0)是經過(0,0)和(1,k)的一條直線

  k>0,k<0;一、三象限Y隨x的增大而增大

  k>0,k<0二、四象限Y隨x的增大而減小

  板

  復習引入 描點法 畫正比例函數(shù)圖象 正比例函數(shù)圖象性質

  規(guī)律應用 總結規(guī)律 練習小結

正比例教案3

  教學要求:

  1.使學生認識正比例關系的意義,理解、掌握成正比例量的變化規(guī)律及其特征,能依據(jù)正比例的意義判斷兩種相關聯(lián)的量成不成正比例關系。

  2.進一步培養(yǎng)學生觀察、分析、綜合和概括等能力,讓學生掌握判斷兩種相關聯(lián)量成不成正比例關系的方法,培養(yǎng)學生判斷、推理的能力。

  教學重點:

  認識正比例關系的意義。

  教學難點:

  掌握成正比例量的變化規(guī)律及其特征。

  教學過程:

  一、復習鋪墊

  1.說出下列每組數(shù)量之間的關系。

  (1)速度時間路程

  (2)單價數(shù)量總價

  (3)工作效率工作時間工作總量

  2.引入新課。

  上面是已經學過的一些常見數(shù)量關系,每組數(shù)量中,數(shù)量之間是有聯(lián)系的,存在著相依關系。當其中有一個量變化時,另一個量也隨著變化,而且這種變化是有規(guī)律的,這節(jié)課開始,我們就來研究和認識這種變化規(guī)律。今天,先認識正比例關系的意義。(板書課題)

  二、自主探究:

  1.教學例1。

  出示例l。讓學生計算,在課本上填表,并思考能發(fā)現(xiàn)什么。指名口答,老師板書填表。讓學生觀察表里兩種量變化的數(shù)據(jù),思考:

  (1)表里有哪兩種數(shù)量,這兩種數(shù)量是怎樣變化?

  (2)長方形的面積隨著那種量的變化而變化的?你能看出它們變化的特點嗎?

  (3)分別找出面積與款項對應的數(shù),面積與寬的比各是幾比幾?比值各是多少?

  引導學生進行討論,得出:

  (1)表里的兩種量是長方形的寬與面積(長與面積)。寬與面積(長與面積)是兩種相關聯(lián)的量,(板書:兩種相關聯(lián)的量)面積隨著寬(長)的變化而變化。

  (2)寬(長)擴大,面積也擴大;寬(長)縮小,面積也縮小。

  (3)可以看出它們的變化規(guī)律是:面積與寬(面積與長)比的比值總是一定的。(板書:面積和寬比的比值一定)因為面積和寬(面積與長)對應數(shù)值比的比值都是5(2)。提問:這里比值5(2)是什么數(shù)量?誰能說出它的數(shù)量關系式?板書:面積/寬=長(一定)面積/長=寬(一定)想一想,這個式子表示的是什么意思?(把上面板書補充成:長一定時,面積和寬比的比值一定寬一定時,面積和長比的比值一定)

  2.教學例2。

  出示例2。要求學生按剛才學習例1的方法學習例2,然后把你學習中的發(fā)現(xiàn)綜合起來告訴大家。學生觀察思考后,指名回答。然后再提問:這兩種相關聯(lián)量的變化規(guī)律是什么?你是怎樣發(fā)現(xiàn)的?你能用數(shù)量關系式表示出來嗎?誰來說說這個式子表示的意思?(把板書補充成單價一定時,總價和數(shù)量比的比值一定)

  3.概括正比例的意義。

  (1)綜合例1、例2的共同點。

  提問:請大家比較例l和例2,你發(fā)現(xiàn)這兩個例題有什么共同的`地方?(①都有兩種相關聯(lián)的量;②都是一種量隨著另一種量變化;③兩種量里對應數(shù)值的比的比值一定)

  (2)概括正比例關系的意義。

  像例l、例2里這樣的兩種相關聯(lián)的量是怎樣的關系呢,請同學們看課本第95頁最后連個自然段。說明:根據(jù)剛才學習例1、例2時發(fā)現(xiàn)的規(guī)律,這里有兩種相關聯(lián)的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數(shù)的比的比值一定,這兩種量就叫做成正比例的量,它們之間的關系叫做正比例關系。追問;兩種相關聯(lián)量成不成正比例的關鍵是什么?(比值是不是一定)提問:如果用x和y表示兩種相關聯(lián)的量,用k表示它們的比值,那么上面這種數(shù)量關系式可以怎樣寫呢?指出:這個式子表示兩種相關聯(lián)的量x和y,y隨著x的變化而變化,它們的比值k是一定的。這時就說x和y成正比例關系。所以,兩個量成正比例關系,我們就用式子=k(一定)來表示。

  4.教學例3學生看書自學,小組討論,集體交流。

  (1)數(shù)量與時間是不是兩種相關聯(lián)的量?

  (2)數(shù)量與時間有什么關系?他們的比值是誰?比值是不是不變的?

  (3)判斷數(shù)量與時間是不是成正比例?

  5.完成97頁練一練。

  三、鞏固練習

  1.(1)提問:例l里有哪兩種相關聯(lián)的量?這兩種量成正比例關系嗎,為什么?例2里的兩種量是不是成正比例的量?為什么?提問:看兩種相關聯(lián)的量是不是成正比例,關鍵要看什么?

  2.做練習十一第1題。

  讓學生讀題思考。指名依次口答題里的問題。指出:根據(jù)上面所說的正比例的意義,要知道兩個量是不是成正比例關系,只要先看兩種量是不是相關聯(lián)的量,再看兩種量變化時比值是不是一定。如果兩種相關聯(lián)的量變化時比值一定,它們就是成正比例的量,相互之間成正比例關系。

  3.下列題里有哪兩種相關聯(lián)的量?這兩種量成不成正比例?為什么?

  一種蘋果,買5千克要10元。照這樣計算,買15千克要30元。

  四、課堂小結

  這節(jié)課學習了什么內容?正比例關系的意義是什么?用怎樣的式子表示y和x這兩種相關聯(lián)的量成正比例?判斷兩種相關聯(lián)的量是不是成正比例,關鍵看什么?關鍵是列出關系式,看是不是比值一定。

  五、家庭作業(yè)

  練習十一第2~6題。

正比例教案4

  【教學目標】

  1、使學生理解正比例的意義,能根據(jù)正比例的意義判斷是不是成正比例。

  2、培養(yǎng)學生概括能力和分析判斷能力。

  3、培養(yǎng)學生用發(fā)展變化的觀點來分析問題的能力。

  【教學重難點】

  重點:

  成正比例的量的特征及其斷方法。

  難點:

  理解兩個變量之間的比例關系,發(fā)現(xiàn)思考兩種相關聯(lián)的量之間的變化規(guī)律。

  【教學過程】

  一、四顧舊知,復習鋪墊

  商店里有兩種包裝的襪子,一種是5雙一包的,售價為25元,一種是8雙一包的,售價為32元。哪種襪子更便宜?

  學生獨立完成后師提問:你們是怎樣比較的?

  生:我先求出每種襪子的單價,再進行比較。

  師:你是根據(jù)哪個數(shù)量關系式進行計算的?

  生:因為總價=單價×數(shù)量,所以單價=總價÷數(shù)量。

  師:如果單價不變,商品的總價和數(shù)量的變化有什么規(guī)律呢?這節(jié)課,我們就來研究正比例。(板書:正比例)

  二、引導探索,學習新知

  1、教學例1,學習正比例的意義。

  (1)結合情境圖,觀察表中的數(shù)據(jù),認識兩種相關聯(lián)的量。師出示自學提示:表中有哪兩種量?總價是怎樣隨著數(shù)量的變化而變化的?學生自學并在組內交流。全班交流。

  (2)認識相關聯(lián)的量。明確:像這樣,一種量變化,另一種量也隨著變化,這兩種量叫做相關聯(lián)的量。

  2、計算表中的數(shù)據(jù),理解正比例的意義。

  (1)計算相應的總價與數(shù)量的比值,看看有什么規(guī)律。學生計算后匯報:= = =…=3、5,每一組數(shù)據(jù)的比值一定。

  (2)說一說,每一組數(shù)據(jù)的比值表示什么?(彩帶的單價,也就是彩帶的單價是一個固定的數(shù))

  (3)請學生用公式把彩帶的總價、數(shù)量、單價之間的關系表示出來。

  (4)明確成正比例的量及正比例關系的意義。兩種相關聯(lián)的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數(shù)的比值一定,這兩種量就叫做成正比例的量,它們的關系叫做正比例關系。如果用字母y和x表示兩種相關聯(lián)的量,用字母k表示它們的'比值(一定),正比例關系可以用下面的式子表示:

  3、列舉并討論成正比例的量。

  (1)生活中還有哪些成正比例的量?預設:速度一定,路程與時間成正比例;長方形的寬一定,面積和長成正比例。

  (2)小結:成正比例的量必須具備哪些條件?哪個條件是關鍵?

  兩種量中相對應的兩個數(shù)的比值一定,這是關鍵。

  4、認識正比例圖象。(課件出示例1的表格及正比例圖象)

  (1)觀察表格和圖象,你發(fā)現(xiàn)了什么?

  (2)把數(shù)對(10,35)和(12,42)所在的點描出來,再和上面的圖象連起來并延長,你還能發(fā)現(xiàn)什么?

  無論怎樣延長,得到的都是直線。

  (3)從正比例圖象中,你知道了什么?

  生1:可以由一個量的值直接找到對應的另一個量的值。

  生2:可以直觀地看到成正比例的量的變化情況。

  (4)利用正比例圖象解決問題。

  不計算,根據(jù)圖象判斷,如果買9 m彩帶,總價是多少?49元能買多少米彩帶?

  小明買的彩帶的米數(shù)是小麗的2倍,他花的錢是小麗的幾倍?預設生:因為在單價一定的情況下,數(shù)量與總價成正比例關系,小明買的彩帶的米數(shù)是小麗的2倍,他花的錢也應是小麗的2倍。設計意圖:先從觀察圖象入手,引導學生直觀認識相關聯(lián)的量,再結合表中的數(shù)據(jù),引導學生發(fā)現(xiàn)總價與數(shù)量的比值一定,使學生理解正比例的意義,最后結合正比例圖象,把數(shù)據(jù)與點聯(lián)系起來,根據(jù)圖象,不用計算就能找到一個量的值所對應的另一個量的值,使學生在解決問題的同時,感受數(shù)形結合思想。+

  三、課堂練習:

  1、P46“做一做”

  2、練習九第1、3~7

正比例教案5

  教學目標:

  1、使學生經歷從具體實例中認識成正比例的量的過程,初步理解正比例的意義,學會根據(jù)正比例的意義判斷兩種相關聯(lián)的量是不是成正比例。

  2、使學生在認識成正比例的量的過程中,初步體會數(shù)量之間相依互變的關系,感受有效表示數(shù)量關系及其變化規(guī)律的不同數(shù)學模型,進一步培養(yǎng)觀察能力和發(fā)現(xiàn)規(guī)律的能力。

  教學重難點:正比例的意義以及判斷兩種相關聯(lián)的量是不是成正比例。

  教學準備:教學光盤

  教學預設:

  一、導入新課

  1、談話:老師準備去水果超市買一些蘋果,已知蘋果每千克的單價是6元,如果我準備買1千克,你能求出什么?(總價)

  2、出示表格

  已知蘋果每千克的單價是6元

  根據(jù)學生的回答將表格填寫完整。

  提問:如果買( )千克,總價( )元 ……;

  觀察表格,你們發(fā)現(xiàn)了什么?(當學生回答:買的千克數(shù)越多,總價就越高)

  師小結:像這樣一種量變化,另一種量也隨著變化,我們就把這兩種量叫做相關聯(lián)的量[板書:兩種相關聯(lián)的量]

  在這里——“買的千克數(shù)”和“總價”就是兩種相關聯(lián)的量。

  二、探索新知

  (一)體會兩種相關聯(lián)的量

  1、出示例1表格

  2、提問:這張表格中的兩個量是否相關聯(lián)?

  學生發(fā)現(xiàn):時間變化,路程也隨著變化,路程和時間是兩種相關聯(lián)的.量。(補充板書)

  (二)探索兩個變量之間的關系

  1、談話:請同學們進一步觀察表中的數(shù)據(jù),找一找這兩種量的變化有什么規(guī)律?

  啟發(fā)學生從“變化”中去尋找“不變”。

  學生可能會從不同的角度去尋找規(guī)律。

  2、教師可根據(jù)交流的實際情況,及時引導學生通過計算確認這一規(guī)律,并有意識地從后一種角度突出這一規(guī)律。

  如果學生發(fā)現(xiàn)不了上述規(guī)律,可引導學生寫出幾組相對應的路程與時間的比,并求出比值。

  3、根據(jù)上面發(fā)現(xiàn)的規(guī)律,進一步啟發(fā)學生思考:這個比值表示什么?上面的規(guī)律能不能用一個式子來表示?

  路程

  根據(jù)學生的回答,教師板書關系式:時間 = 速度(一定)

  4、教師對兩種量之間的關系作具體說明:當路程和對應時間的比的比值總是一定,也就是速度一定時,我們就說行駛的路程和時間成正比例,行駛的路程和時間是成正比例的量。

  (板書:路程和時間成正比例)

  反問:在什么條件下行駛的路程和時間呈正比例?

  三、教學“試一試”

  1、要求學生根據(jù)表中的已知條件先把表格填寫完整。

  2、根據(jù)表中的數(shù)據(jù),依次討論表格下面的四個問題,并仿照例1作適當?shù)陌鍟?/p>

  3、讓學生根據(jù)板書完整地說一說鉛筆的總價和數(shù)量成什么關系。

  四、抽象表達正比例的意義

  1、引導學生觀察上面的兩個例子,說說它們有什么共同點。

  2、啟發(fā)學生思考:如果用字母x和分別表示兩種相關聯(lián)的量,用 表示它們的比值,正比例關系可以用怎樣的式子來表示?

  根據(jù)學生的回答,板書關系式/x=(一定)

  五、鞏固練習

  1、完成第63頁的“練一練”。

  先讓學生獨立思考并作出判斷,再要求說明判斷理由。你是怎樣判斷的?

  2、做練習十三第1~3題。

  第1題讓學生按題目要求先各自算一算、想一想,再組織討論和交流。

  第2題先讓學生獨立進行判斷,再指名說判斷的理由。

  第3題要先讓學生說說題目要求我們把已知的正方形按怎樣的比放大,放大后正方形的邊長各是幾厘米,再讓學生在圖上畫一畫。

  填好表格后,組織學生討論,明確:只有當兩種相關聯(lián)的量的比值一定時,它們才能成正比例。

  六、全課小結

  通過這節(jié)課的學習,你有哪些收獲?

  七、課堂作業(yè):

  完成補充習題的相關練習

  補充練習:

  1、判斷下面每題中的兩種量是不是成正比例,并說明理由。

  ①每小時織布米數(shù)一定,織布總米數(shù)和時間。

  ②每人樹植棵數(shù)一定,參加植樹人數(shù)和植樹總棵數(shù)。

  ③訂閱《中國少年報》的份數(shù)和錢數(shù)。

  ④小新跳高的高度和他的身高。

  ⑤長方形的寬一定,它的面積和長。

  2、選擇。

  a和b相關聯(lián)的兩種量,下面哪個式子表示a和b成正比例?

  ①a+b=12 ② =5 ③ab= ④a-b=3.8 ⑤b=7a

  3、x、、z是三種相關聯(lián)的量,已知x×=z。

  當( )一定時,( )和( )成正比例。

正比例教案6

  教學內容:教科書第19—21頁正比例的意義,練習六的1—3題。

  教學目的:

  1.使學生理解正比例的意義,能夠根據(jù)正比例的意義判斷兩種量是不是成正比例。

  2.初步培養(yǎng)學生用事物相互聯(lián)系和發(fā)展變化的觀點來分析問題。

  3.初步滲透函數(shù)思想。

  教具準備:投影儀、投影片、小黑板。

  教學過程():

  一、復習

  用,投影片逐一出示下面的題目,讓學生回答。

  1.已知路程和時間,怎樣求速度?板書: =速度

  2.已知總價和數(shù)量,怎樣求單價?板書: =單價

  3.己知工作總量和工作時間,怎樣求工作效率?板書:

  =工作效率

  4,已知總產量和公頃數(shù),怎樣求公頃產量?板書: =公頃產量

  二、導人新課

  教師:這是我們過去學過的一些常見的數(shù)量關系。這節(jié)課我們進一步來研究這些數(shù)量關系中的一些特征,首先來研究這些數(shù)量之間的正比例關系。(板書課題:正比例的意義)

  三、新課

  1.教學例1。

  用小黑板出示例1:一列火車行駛的時間和所行的路程如下表:

  提問:

  “誰來講講例1的意思?”(火車1小時行駛60千米,2小時行駛120千米……)

  “表中有哪幾種量?”

  “當時間是1小時,路程是多少?當時間是2小時,路程又是多少?……”

  “這說明時間這種量變化了,路程這種量怎么樣了?”(也變化了。)

  教師說明:像這樣,一種量變化,另一種量也隨著變化,我們就說這兩種量是兩種相關聯(lián)的量。(板書:兩種相關聯(lián)的量)“時間和路程是兩種相關聯(lián)的量,路程是怎樣隨著時間變化而變化的呢?”

  教師指著表格:我們從左往右觀察(邊講邊在表格上畫箭頭),時間擴大2倍,對應的路程也擴大2倍3時間擴大3倍,對應的路程也擴大3倍……從右往左觀察(邊講邊在表格上畫反方向的箭頭),時間縮小8倍,對應的路程也縮小8倍;時間縮小7倍,對應的路程也縮小7倍……時間縮小2倍,對應的路程也縮小2倍。通過觀察,我們發(fā)現(xiàn)路程是隨著時間的變化而變化的。時間擴大路程也擴大,時間縮小路程也縮小。它們擴大、縮小的規(guī)律是怎么樣的呢?

  讓每一小組(8個小組)的同學選一組相對應的數(shù)據(jù),計算出它們的比值。教師板書出來: =60. =60, =60…… 讓學生雙察這些比和它們的比值,看有什么規(guī)律。教師板書:相對應的兩個數(shù)的比值(也就是商)一定。

  然后教師指著 =60, =60 = 60……問:“比值60,實際上是火車的什么:你能將這些式子所表示的意義寫成一個關系式嗎?板書: =速度(—定)

  教師小結:通過剛才的觀察和分析.我們知道路程和時間是兩種什么樣的量?(兩種相關聯(lián)的量。)路程和時間這兩種量的變化規(guī)律是什么呢?(路程和時間的比的比值(速度)總是一定的。)

  2.教學例2。

  出示例2:在一間布店的柜臺上,有一張寫著某種花布的米數(shù)和總價的表。

  讓學生觀察上表,并回答下面的問題:

  (1)表中有哪兩種量?

  (2)米數(shù)擴大,總價怎樣?米數(shù)縮小,總價怎樣?

  (3)相對應的總價和米數(shù)的比各是多少?比值是多少?

  當學生回答完第二個問題后,教師板書: =3.1, =3.1, =3.1……

  然后進一步問:

  “這個比值實際上是什么?你能用一個關系式表.示它們的關系嗎?”板書: =單價(一定)

  教師小結:通過剛才的思考和分析,我們知道總價和米數(shù)也是兩種相關聯(lián)的量,總價是隨著米數(shù)的變化而變化的,米數(shù)擴大,總價也隨著擴大;米數(shù)縮小,總價也隨著縮小。它們擴大、縮小的規(guī)律是:總價和米數(shù)的比的`比值總是一定的。

  3.抽象概括正比例的意義。

  教師:請同學們比較一下剛才這兩個例題,回答下面的問題;

  (1)都有幾種量?

  (2)這兩種量有沒有關系?

  (3)這兩種量的比值都是怎樣的?

  教師小結:通過比較,我們看出上面兩個例題,有一些共同特點:都有兩種相關聯(lián)的量,一種量變化,另一種量也隨著變化,并且這兩種量中相對應的兩個數(shù)的比值(也就是商)一定。像這樣的兩種量我們就把它們叫做成正比例的量,它們的關系叫做正比例關系。(板書出教科書上第’20頁的倒數(shù)第二段。)

  接著指著例1的表格說明:在例1中,路程隨著時間的變化而變化,它們的比值(速度)保持一定,所以路程和時間是成正比例的量。隨后讓學生想一想:在例2中,有哪兩種相關聯(lián)的量:它們是不是成正比例的量?為什么?

  最后教師提出:如果我們用字母X,y表示兩種相關聯(lián)的量.用字母K表示它們的比值,你能將正比例關系用字母表示出來嗎?

  學生回答后,教師板書: =K(一定)

  4,教學例3。

  出示例3:每袋面粉的重量一定,面粉的總重量和袋數(shù)是不是成正比例?

  教師引導:

  “面粉的總重量和袋數(shù)是不是相關聯(lián)的量?”·

  “面粉的總重量和袋數(shù)有什么關系?它們的比的比值是什么?這個比值是否—定?”(板書: =每袋面粉的重量(一定))

  “已知每袋面粉的重量一定,就是面粉的總重量和袋數(shù)的比的比值是一定的,所以面粉的總重量和袋數(shù)成正比例。”

  5.鞏固練習。

  讓學生試做第21頁“做一做”中的題目。其中(3)要求學生說明這個比值所表示的意義,學生說成是生產效率和每天生產的噸數(shù)都可以。

  四、課堂練習

  完成練習六的第1—3題。

  第1題,做題前,讓學生想一想:成正比例的量要滿足哪幾個條件?然后讓學生算出各表中兩種相對應的數(shù)的比的比值,看看它們的比值是否相等。如果比值相等就可以列出關系式進行判斷。第(3)小題,要問一問學生為什么正方形的邊長和面積不成比例。(因為相對應的正方形的邊長和面積的比的比值不相等。)

  第2題,先讓學生自己判斷,再訂正。其中(1)一(5)、(7)、(8)成正比例,(6)和(9)不成正比例。

  第3題,可先讓同桌的同學互相舉例,然后再指名舉出成正比例的例子。

正比例教案7

  學習目標

  (一)知識教學點

  1、使學生理解正比例的意義。

  2、能根據(jù)正比例的意義判斷兩種量是不是成正比例。

  (二)能力訓練點

  1、培養(yǎng)學生用發(fā)展變化的觀點來分析問題的能力。

  2、培養(yǎng)學生抽象概括能力和分析判斷能力。

  (三)德育滲透點

  1、通過引導學生用發(fā)展變化的觀點來分析問題,使學生進一步受到辯證唯物主義觀點的啟蒙教育。

  2、進一步滲透函數(shù)思想。

  教學重點:

  使學生理解正比例的意義。

  教學難點:

  引導學生通過觀察、思考發(fā)現(xiàn)兩種相關聯(lián)的量的變化規(guī)律,即它們相對應的數(shù)的比值一定,從而概括出正比例關系的概念。

  教具學具準備:

  投影儀、投影片、小黑板。

  教學步驟

  一、鋪墊孕伏

  用投影逐一出示下列題目,請同學回答:

  1、已知路程和時間,怎樣求速度?

  2、已知總價和數(shù)量,怎樣求單價?

  3、已知工作總量和工作時間,怎樣求工作效率?

  二、探究新知

  1、導入新課:這些都是我們已經學過的常見的數(shù)量關系。這節(jié)課,我們繼續(xù)研究這些數(shù)量關系中的一些特征。

  2、教學例1

  (1)投影出示:一列火車1小時行駛60千米,2小時行駛120千米,3小時行駛180千米,4小時行駛240千米,5小時行駛300千米,6小時行駛360千米,7小時行駛420千米,8小時行駛480千米?

  (2)出示下表,并根據(jù)上述內容填表。

  (3)邊填表邊思考:在填表過程中,你發(fā)現(xiàn)了什么?

  學生交流時,使之明確。

  ①表中有時間和路程兩種量。

  ②當時間是1小時,路程則是60千米,時間是2小時,路程是120千米?時間變化,路程也隨著變化,時間擴大,路程隨著擴大;時間縮小,路程也隨著縮小。

  教師點撥:像這樣,時間變化,路程也隨著變化,我們就說,時間和路程是兩種相關聯(lián)的量。(板書:

  兩種相關聯(lián)的量)

  ③如果學生沒有問題,教師提示:請每位同學任選一組相對應的數(shù)據(jù),計算出路程與時間的比的比值。

  教師問:根據(jù)計算,你發(fā)現(xiàn)了什么?

  引導學生得出:相對應的兩個數(shù)的比值都是60或都一樣,固定不變等。

  教師指出:相對應的兩個數(shù)的比的比值都一樣或固定不變,在數(shù)學上叫做“一定”。(板書:相對應的兩個數(shù)的比值一定)

  ④比值60,實際就是火車的速度。用式子表示它們的關系就是:

  (4)教師小結:

  剛才同學們通過填表、交流,我們知道時間和路程是兩種相關聯(lián)的量,路程隨著時間的變化而變化。時間擴大,路程隨著擴大;時間縮小,路程也隨著縮小。它們擴大、縮小的規(guī)律是:路程和時間的比的比值總

  3、教學例2

  (1)出示例2:在一間布店的柜臺上,有一張寫著某種花布的米數(shù)和總價的表。

  (2)觀察上表,引導學生明確:

  ①表中有數(shù)量(米數(shù))和總價這兩種量,它們是兩種相關聯(lián)的`量。

  ②總價隨米數(shù)的變化情況是:

  米數(shù)擴大,總價隨著擴大;米數(shù)縮小,總價也隨著縮小。

  ③相對應的總價和米數(shù)的比的比值是一定的。

  ④比值3.1,實際就是這種花布的單價。用式子表示它們的關系就是:

  (3)師生小結:通過剛才的觀察和分析,我們知道總價和米數(shù)也是兩種什么樣的量?(兩種相關聯(lián)的量)為什么?(總價隨著米數(shù)的變化而變化。)怎樣變化?(米數(shù)擴大,總價隨著擴大;米數(shù)縮小,總價隨著縮小。)它們擴大、縮小的規(guī)律是怎樣的?(總價和米數(shù)的比的比值總是一定的。)

  4、抽象概括正比例的意義。

  (1)比較例1、例2,思考并討論,這兩個例子有什么共同點?

  (2)學生初步交流時引導學生明確:

  ①例1中有路程和時間兩種量;例2中有米數(shù)和總價兩種量。即它們都有兩種相關聯(lián)的量;②例1中時間變化,路程就隨著變化;例2中米數(shù)變化,總價也隨著變化。

  教師點撥:像這樣,我們就可以說:一種量變化,另一種量也隨著變化。(板書)

  ③例1中路程與時間的比的比值一定:例2中總價與米數(shù)的比的比值一定。概括地講就是:兩種量中相對應的兩個數(shù)的比值(也就是商)一定。

  (學生答不出來時,教師引導、點撥,并補充板書:兩種量中)

  (3)引導學生抽象概括出兩例的共同點:

  兩種相關聯(lián)的量,一種量變化,另一種量也隨著變化,這兩種量中相對應的兩個數(shù)的比值(也就是商)一定。

  (4)教師指明:兩種相關聯(lián)的量,一種變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數(shù)的比值(也就是商)一定,這兩種量就叫做成正比例的量,它們的關系叫做正比例關系。(補充板書:如果這成正比例的量正比例關系)

  這就是我們這節(jié)課學習的“正比例的意義”(板書課題)

  (5)看書11、13頁的內容,進一步理解正比例的意義。

  (6)教師說明:在例1中,路程隨著時間的變化而變化,它們的比的比值(速度)保持一定,所以路程和時間是成正比例的量。

  (7)想一想:在例2中,有哪兩種相關聯(lián)的量?它們是不是成正比例的量?為什么?

  (8)教師提出:如果字母x和y表示兩種相關聯(lián)的量,用k表示它們的比值(一定),正比例關系怎樣用字母表示出來?

  (9)教師提出:根據(jù)正比例的意義以及表示正比例關系的式子想一想:構成正比例關系的兩種量必須具備哪些條件?

  5、教學例3

  (1)出示例3:每袋面粉的重量一定,面粉的總重量和袋數(shù)是不是成正比例?

  (2)根據(jù)正比例的意義,由學生討論解答。

  (3)匯報判斷結果,并說明判斷的根據(jù)。

  教師板書:面粉的總重量和袋數(shù)是兩種相關聯(lián)的量。

  所以面粉的總重量和袋數(shù)成正比例。

  6、反饋練習

  讓學生試做第13頁的做一做,并訂正。

  三、鞏固發(fā)展

  1、完成練習三第1題。

  先想一想成正比例的量要滿足哪幾個條件?再算出各表相對應數(shù)的比的比值。如果相等,列關系式判斷。第(3)題不成比例,訂正時要學生說明為什么?

  先讓學生自己判斷,再訂正。

  四、全課小結(師生共同進行)

  通過這節(jié)課的學習,你都知道了什么?怎樣判斷兩種量是否成正比例?

正比例教案8

  教學內容:

  教科書69、70頁練習十三第9~13題

  教學目標:

  1、使學生進一步認識正、反比例的意義,了解正反比例的區(qū)別和聯(lián)系,更好的把握正、反比例概念的本質。

  2、進一步加深學生對正、反比例意義的理解,使他們能夠從整體上把握各種量之間的比例關系,能根據(jù)相關條件直接判斷兩種量成什么比例,提高判斷成正比例、反比例量的能力。

  教學重難點:

  進一步認識正、反比例的意義,能根據(jù)相關條件直接判斷兩種量成什么比例,提高判斷成正比例、反比例量的能力。

  教學準備:實物投影

  教學過程:

  一、復習

  1、復習正反比例的意義。

  要求學生說出成正反比例量的關鍵,根據(jù)學生回答板書關系式。

  2、判斷下面各題中的兩種量是不是成比例,成什么比例

  (1)圓錐的體積和底面積。

  (2)用銅制成的零件的體積和質量。

  (3)一個人的身高和體重。

  (4)互為倒數(shù)的兩個數(shù)。

  (5)三角形的底一定,它的面積和高。

  (6)圓的周長和直徑。

  (7)被除數(shù)一定,商和除數(shù)。

  二、練習

  完成練習十三9~13題

  1、第9題。

  觀察每個表中的數(shù)據(jù),討論表下的問題。要注意啟發(fā)學生根據(jù)表數(shù)據(jù)的變化規(guī)律,寫出相應的數(shù)量關系式,再進行判斷。

  2、第10題。

  (1)看圖填寫表格。

  (2)求出這幅圖的比例尺,再根據(jù)圖像特點判斷圖上距離和實際距離成什么比例,也可以根據(jù)相關的計算結果作出判斷。要讓學生認識到:同一幅地圖的比例尺一定,所以這幅圖的圖上距離和實際距離成正比例。

  (3)啟發(fā)學生運用有關比例尺的知識進行解答。

  3、第11題。

  填寫表格,組織學生對兩個問題進行比較,進一步突出成反比例量的特點。

  4、第12題。

  引導學生說說每題中的哪兩種量是變化的`,這兩種量中,一種量變化,另一種量也隨著變化,能不能用相應的數(shù)量關系式表示這種變化的規(guī)律。

  5、第13題。

  讓學生小組進行討論,教師指導有困難的學生。

  三、補充練習

  1、a與b成正比例,并且在a =1。。時,b的對應值是0。15

  (1)a與b的關系式是a/b=()

  (2)當a=2。5時,b的對應值是()

  (3)當b=9。2時,a的對應值是()

  2、甲、乙兩人步行速度的比為5:6,從A地到B地,甲走12小時,乙要走幾小時?

正比例教案9

  教學要求:

  1.使學生認識正比例關系的意義,理解、掌握成正比例量的變化規(guī)律及其特征,能依據(jù)判斷兩種相關聯(lián)的量成不成正比例關系。

  2.進一步培養(yǎng)學生觀察、分析、綜合和概括等能力,讓學生掌握判斷兩種相關聯(lián)量成不成正比例關系的方法,培養(yǎng)學生判斷、推理的能力。

  教學重點:認識正比例關系的意義。

  教學難點:掌握成正比例量的變化規(guī)律及其特征。

  教學過程:

  一、復習鋪墊

  1.說出下列每組數(shù)量之間的關系。

  (1)速度 時間 路程

  (2)單價 數(shù)量 總價

  (3)工作效率 工作時間 工作總量

  2.引入新課。

  上面是已經學過的一些常見數(shù)量關系,每組數(shù)量中,數(shù)量之間是有聯(lián)系的,存在著相依關系。當其中有一個量變化時,另一個量也隨著變化,而且這種變化是有規(guī)律的,這節(jié)課開始,我們就來研究和認識這種變化規(guī)律。今天,先認識正比例關系的意義。(板書課題)

  二、教學新課

  1.教學例1。

  出示例l。讓學生計算,在課本上填表,并思考能發(fā)現(xiàn)什么。指名口答,老師板書填表。讓 學 生觀察表里兩種量變化的數(shù)據(jù),思考:

  (1)表里有哪兩種數(shù)量,這兩種數(shù)量是怎樣變化?

  (2)路程和時間相對應數(shù)值的比的比值各是多少?這兩種量變化有什么規(guī)律?

  引導學生進行討論,得出:

  (1)表里的兩種量是所行時間和所行路程。路程和時間是兩種相關聯(lián)的量,(板書:兩種相關聯(lián)的量)路程隨著時間的變化而變化。

  (2)時間擴大,路程也擴大;時間縮小,路程也縮小。

  (3)可以看出它們的變化規(guī)律是:路程和時間比的比值總是一定的。(板書:路程和時間比的比值一定)因為路程和時間對應數(shù)值比的比值都是50。提問:這里比值50是什么數(shù)量?(誰能說出它的數(shù)量關系式?想一想,這個式子表示的是什么意思?(把上面板書補充成:速度一定時,路程和時間比的比值一定)

  2.教學例2。

  出示例2和思考題。要求學生按剛才學習例1的方法學習例2,然后把你學習中的發(fā)現(xiàn)綜合起來告訴大家。學生觀察思考后,指名回答。然后再提問:這兩種相關聯(lián)量的變化規(guī)律是什么?枝數(shù)比的比值一定)你是怎樣發(fā)現(xiàn)的?比值1.6是什么數(shù)量,你能用數(shù)量關系式表示出來嗎?誰來說說這個式子表示的意思?(把板書補充成c單價一定時,總價和枝數(shù)比的比值一定)

  3.概括。

  (1)綜合例1、例2的共同點。

  提問:請大家比較例l和例2,你發(fā)現(xiàn)這兩個例題有什么共同的地方?(①都有兩種相關聯(lián)的量;②都是一種量隨著另一種量變化;③兩種量里對應數(shù)值的比的比值一定)

  (2)概括正比例關系的意義。

  像例l、例2里這樣的兩種相關聯(lián)的量是怎樣的關系呢,請同學們看課本第40頁最后一節(jié)。說明:根據(jù)剛才學習例1、例2時發(fā)現(xiàn)的規(guī)律,這里有兩種相關聯(lián)的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數(shù)的比的比值一定,這兩種量就叫做成正比例的量,它們之間的關系叫做正比例關系。追問;兩種相關聯(lián)量成不成正比例的關鍵是什么?(比值是不是一定)提問:如果用x和y表示兩種相關聯(lián)的量,用k表示它們的'比值,那么上面這種數(shù)量關系式可以怎樣寫呢? 指出:這個式子表示兩種相關聯(lián)的量x和y,y隨著x的變化而變化,它們的比值k是一定的。這時就說x和y成正比例關系。所以,兩個量成正比例關系,我們就用式子 =k (一定)來表示。

  4.具體認識。

  (1)提問:例l里有哪兩種相關聯(lián)的量?這兩種量成正比例關系嗎,為什么?例2里的兩種量是不是成正比例的量?為什么?提問:看兩種相關聯(lián)的量是不是成正比例,關鍵要看什么?

  (2)做練習八第1題。

  讓學生讀題思考。指名依次口答題里的問題。指出:根據(jù)上面所說的,要知道兩個量是不是成正比例關系,只要先看兩種量是不是相關聯(lián)的量,再看兩種量變化時比值是不是一定。如果兩種相關聯(lián)的量變化時比值一定,它們就是成正比例的量,相互之間成正比例關系。

  5.教學例3。

  出示例3,讓學生思考。提問:怎樣判斷是不是成正比例?哪位同學說說零件總數(shù)和時間成不成正比例?為什么?請同學們看一看例3,書上怎樣判斷的,我們說得對不對。追問:判斷兩種量是不是成正比例要怎樣想?強調:關鍵是列出關系式,看是不是比值一定。

  三、鞏固練習

  現(xiàn)在,我們根據(jù)上面的判斷方法來做一些題。

  1.做“練一練”第l題。

  指名學生口答,說明理由。可以結合寫出數(shù)量關系式。

  2.做“練一練”第2題。

  指名口答,并要求說明理由。

  3.做練習八第2題。

  小黑板出示。讓學生把成正比例關系的先勾出來。指名口答,選擇幾題讓學生說一說怎樣想的?(必要時寫出關系式讓學生判斷)

  4.下列題里有哪兩種相關聯(lián)的量?這兩種量成不成正比例?為什么?

  一種蘋果,買5千克要10元。照這樣計算,買15千克要30元。

  四、課堂小結

  這節(jié)課學習了什么內容?正比例關系的意義是什么?用怎樣的式子表示y和x這兩種相關聯(lián)的量成正比例?判斷兩種相關聯(lián)的量是不是成正比例,關鍵看什么?

  五、家庭作業(yè)

  練習八第3題。

正比例教案10

  課前準備

  教師準備多媒體課件

  教學過程

  談話導入

  師:誰能用比的知識說一說我們班男女同學的人數(shù)情況?

  (指名匯報)

  師:今天我們就一起來整理和復習比和比例的有關知識。

  回顧與整理

  1.(1)舉例說一說什么是比,什么是比例,什么是比例尺以及它們的應用。

  預設

  生1:兩個數(shù)相除又叫作兩個數(shù)的比,如5÷2,可以寫成5∶2。

  生2:表示兩個比相等的式子叫作比例,如8∶4=24∶12。

  生3:圖上距離和實際距離的比,叫作這幅圖的比例尺,如一幅地圖的比例尺是。比例尺可分為數(shù)值比例尺和線段比例尺。

  生4:配制農藥會應用到比的'知識;地圖上一般都有比例尺。

  ……

  (2)說一說比與比例有什么區(qū)別。

  比

  比例

  各部分名稱

  0.9 ∶ 0.6=1.5

  前項后項比值

  基本性質

  比的前項和后項同時乘或除以相同的數(shù)(0除外),比值不變。

  在比例里,兩個內項的積等于兩個外項的積。

  (3)出示教材83頁“回顧與交流”2題。

  學生獨立完成,思考比、分數(shù)、除法之間的關系,并全班交流。

  預設

  生1:除法算式中的被除數(shù)相當于分數(shù)的分子,相當于比的前項;除法算式中的除數(shù)相當于分數(shù)的分母,相當于比的后項;除號相當于分數(shù)的分數(shù)線,相當于比的比號。

  生2:除法算式的商相當于分數(shù)的分數(shù)值,相當于比的比值。

  強調:因為0不能作除數(shù),所以所有分數(shù)的分母及比的后項都不能為0。

正比例教案11

  【教學目標】

  1、使學生理解正比例的意義,會正確判斷成正比例的量。

  2、使學生了解表示成正比例的量的圖像特征,并能根據(jù)圖像解決有關簡單問題。

  【教學重點】正比例的意義。

  【教學難點】正確判斷兩個量是否成正比例的關系。

  【教學準備】多媒體課件

  【自學內容】見預習作業(yè)

  【教學預設】

  一、自學反饋

  1、揭題

  今天這節(jié)課,我們一起學習成正比例的量。板書:成正比例的量

  2、通過自學,你能說說什么叫做成正比例的量?

  3、你是怎樣理解成正比例的量的含義的?

  4、在現(xiàn)實生活中,我們常常遇到兩種相關聯(lián)的量的變化情況,其中一種量變化,另一種量也隨著變化,你以舉出一些這樣的例子嗎?

  在教師的引導下,學生會舉出一些簡單的例子,如:

  (1)班級人數(shù)多了,課桌椅的數(shù)量也變多了;人數(shù)少了,課桌椅也少了。

  (2)送來的牛奶包數(shù)多了,牛奶的總質量也多了;包數(shù)少了,總質量也少了。

  (3)上學時,去的速度快了,時間用少了;速度慢了,時間用多了。

  (4)排隊時,每行人數(shù)少了,行數(shù)就多了;每行人數(shù)多了。行數(shù)就少了。

  5、你是怎樣判斷兩個量是否成正比例關系的?

  二、關鍵點撥

  1、正比例的意義

  (1)出示表格。

  高度/㎝ 2 4 6 8 10 12

  體積/㎝3 50 100 150 200 250 300

  底面積/㎝2

  問:你有什么發(fā)現(xiàn)?

  學生不難發(fā)現(xiàn):杯子的底面積不變,是25平方厘米。

  板書:

  教師:體積與高度的比值一定。

  (2)說明正比例的意義。

  因為杯子的底面積一定,所以水的體積隨著高度的變化而變化。水的高度增加,體積也相應增加,水的高度降低,體積也相應減少,而且水的體積和高度的比值一定。

  板書出示:像這樣,兩種相關聯(lián)的量,一種量變化,另一種子量也隨著變化,如果這兩種量中相對應的兩個數(shù)的比值一定,這兩種理就叫做成正比例的量,它們的關系叫做正比例關系。

  (3)用字母表示。

  如果用字母X和Y表示兩種相關聯(lián)的量,用K表示它們的比值(一定),比例關系可以用正的式子表示:

  2、判斷正比例關系

  (1)學生讀一讀,說一說你是怎么理解正比例關系的?

  要求學生把握三個要素:兩種相關聯(lián)的量;其中一個量增加,另一個量也增加;一個量減少,另一個量也減少;兩個量的比值一定。

  (2)試一試:下面哪些是成正比例的兩個量?

  長方形的寬一定,面積和長成正比例。

  每袋牛奶質量一定,牛奶袋數(shù)和總質量成正比例。

  衣服的單價一不定期,購買衣服的數(shù)量和應付錢數(shù)成正比例。

  地磚的'面積一定,教室地板面積和地磚塊數(shù)成正比例。

  三、鞏固練習

  1、學生獨立完成例2后反饋交流。

  (1)從圖中你發(fā)現(xiàn)了什么?

  這些點都在同一條直線上。

  (2)看圖回答問題。

  ①如果杯中水的高度是7㎝,那么水的體積是多少?

  生:175㎝3。

  ②體積是225㎝3的水,杯里水面高度是多少?

  生:9㎝。

  ③杯中水的高度是14㎝,那么水的體積是多少?描出這一對應的點是否在直線上?

  生:水的體積是350㎝3,相對應的點一定在這條直線上。

  (3)你還能提出什么問題?有什么體會?

  通過交流使學生了解成正比例量的圖像特往。

  2、做一做。

  過程要求:

  (1)讀一讀表中的數(shù)據(jù),寫出幾組路程和時間的比,說一說比值表示什么?

  比值表示每小時行駛多少千米(速度)。

  (2)表中的路程和時間成正比例嗎?為什么?

  成正比例。理由:

  ①路程隨著時間的變化而變化;

  ②時間增加,路程也增加,時間減少,路程也隨著減少;

  ③種程和時間的比值(速度)一定。

  (3)在圖中描出表示路程和時間的點,并連接起來。有什么發(fā)現(xiàn)?所描的點在一條直線上。

  (4)行駛120KM大約要用多少時間?

  (5)你還能提出什么問題?

  3、獨立完成第44頁練習七第1、2題。

  4、判斷并說明理由。

  (1)圓的周長和直徑成正比例。

  (2)圓的周長和半徑成正比例。

  (3)圓的面積和半徑成正比例。

  四、分享收獲暢談感想

  這節(jié)課,你有什么收獲?聽課隨想

  反思與體會:

正比例教案12

  教學內容

  教科書第52頁例1,第55頁課堂活動第1題及練習十二1,2,3題。

  教學目標

  1.使學生通過具體問題情境認識成正比例的量,理解其意義,并能判斷兩種量是否成正比例關系,能找到生活中成正比例的實例,并進行交流。

  2.通過探索正比例意義的教學活動,使學生感受事物中充滿著運動、變化的思想,并且特定的事物發(fā)展、變化是有規(guī)律的。

  3.通過觀察、交流、歸納、推斷等教學活動,感受數(shù)學思維過程的合理性,培養(yǎng)學生的觀察能力、推理能力、歸納能力和靈活應用知識的能力。

  教學重點

  認識成正比例的量,理解其意義,并能判斷兩種量是否成正比例關系。

  教學難點

  理解正比例的意義,感受事物中充滿著運動、變化的思想,并且特定的事物發(fā)展、變化是有規(guī)律的。

  教學準備

  教具:多媒體課件。

  學具:作業(yè)本,數(shù)學書。

  教學過程

  一、聯(lián)系生活,復習引入

  (1)下面是居委會張阿姨負責的小區(qū)水費收繳情況,用這個表中的數(shù)能寫成多少個有意義的比?哪些比能組成比例?把能組成的比例都寫出來。

  (2)揭示課題。

  教師:在上面的表中,有哪兩種量?(水費和用水量、總價和數(shù)量)在我們平時的生活中,除了這兩種量,我們還要遇到哪些數(shù)量呢?

  教師:這些數(shù)量之間藏著不少的知識,今天這節(jié)課我們就來研究這些數(shù)量間的一些規(guī)律和特征。

  二、自主探索,學習新知

  1.教學例1

  用課件在剛才準備題的表格中增加幾列數(shù)據(jù),變成表。

  教師:請同學們觀察這張表,先獨立思考后再討論、交流:從這張表中你發(fā)現(xiàn)了什么規(guī)律?并根據(jù)這種規(guī)律幫助張阿姨把表格填寫完整。

  教師根據(jù)學生的回答將表格完善,并作必要的板書。

  教師:同學們發(fā)現(xiàn)表格中的水費隨著用水量的增加也在不斷增加,像這樣水費隨著用水量的變化而變化,我們就說水費和用水量是相互關聯(lián)的。

  板書:相關聯(lián)

  教師:你們還發(fā)現(xiàn)哪些規(guī)律?

  學生在這里主要體會水費除以用水量得到的每噸水單價始終是不變的,教師可根據(jù)學生的回答板書出來,便于其他學生觀察:

  教師:水費除以用水量得到的單價相等也可以說是水費與用水量的比值相等,也就是一個固定的數(shù)。

  板書:

  2.教學試一試

  教師:我們再來研究一個問題。

  課件出示第52頁下面的試一試。

  學生先獨立完成。

  教師:你能用剛才我們研究例1的方法,自己分析這個表格中的數(shù)據(jù)嗎?

  教師根據(jù)學生的回答歸納如下:

  表中的路程和時間是相關聯(lián)的量,路程隨著時間的變化而變化。

  時間擴大若干倍,路程也擴大相同的倍數(shù);時間縮小若干倍,路程縮小相同的倍數(shù)。

  路程與時間的比值是一定的`,速度是每時80 km,它們之間的關系可以寫成路程時間=速度(一定)

  3.教學議一議

  教師:我們研究了上面生活中的兩個問題,誰能發(fā)現(xiàn)它們之間的共同點呢?

  引導學生歸納出這兩個問題中都有相關聯(lián)的量,一種量擴大或縮小若干倍,另一種量也隨著擴大或縮小相同的倍數(shù),所以它們的比值始終是一定的。

  教師:像上面這樣的兩種量,叫做成正比例的量,它們的關系叫做成正比例關系。

  4.教學課堂活動

  教師:請大家說一說生活中還有哪些是成正比例的量。

  三、夯實基礎,鞏固提高

  (1)完成練習十二的第1題。

  教師:請同學們用所學知識判斷一下,下面表中的兩種量成正比例關系嗎?為什么?

  學生獨立思考,先小組內交流再集體交流。

  (2)完成練習十二的第2題。

  四、全課小結

  教師:這節(jié)課你們學到了哪些知識?用了哪些學習方法?還有哪些不懂的問題?

正比例教案13

  教學目的:

  1、結合豐富的實例,認識正比例。

  2、能根據(jù)正比例的意義,判斷兩個相關聯(lián)的量是不是正比例。

  3、利用正比例解決一些簡單的生活問題,感受正比例關系在生活中的廣泛應用。

  教學過程

一、復習導入:

  1、在現(xiàn)實生活中有許多互相依賴的變量,誰來舉例子說一說都有哪些?

  2、在這些互相依賴的變量中,有一些互相依賴的變量之間有著共同之處,這節(jié)課我們就一起來研究它們,看誰在這節(jié)課里表現(xiàn)得最好。

  二、新授

  1、請同學打開書19頁,看第一題。

  (1)讀題

  (2)指導看圖

  請同學看書上左邊的圖像,橫軸表示什么?縱軸表示什么?

  (3)請同學在書上把表格填完整

  (4)學生匯報

  (5)仔細看(1)的表格和圖像,想一想,哪個量是隨著哪個量變化而變化的?怎么變化的?(正方形的周長是隨著邊長的變化而變化的,正方形的周長是隨著邊長的增加而增加的)

  再看(2)的表格與圖像,哪個量隨著哪個量是怎樣變化的?(正方形的面積是隨著邊長的增加而增加的)

  (6)看看這兩個表格和圖像,正方形的周長與邊長的變化規(guī)律和正方形的面積與邊長的變化規(guī)律相同么?(不一樣,正方形的周長總是邊長的4倍,也就是比值一定,正方形的周長與邊長的變化規(guī)律的圖像是一條直線,正方形的面積是邊長與邊長的乘積,正方形的面積與邊長的變化規(guī)律的圖像是一條曲線)

  2、接著請同學看黑板,我們再來看第二題

  一輛汽車行駛的速度為90千米/時,汽車行駛的時間和路程如下:

  時間/時

  1

  2

  3

  4

  5

  6

  7

  8

  路程/千米

  90

  180

  270

  360

  (1)找一生讀題 怎么求路程?路程=速度×時間

  (2)請同學根據(jù)這個式子在書上把表格填完整(3)對答案

  (4)仔細看表中有哪兩種變化的量?(時間和路程)

  (5)仔細看表格,路程是怎樣隨著時間的變化而變化的?(路程是隨著時間的增加而增加,具體點說,時間擴大原來的幾倍,路程也擴大

  在整個變化過程中,什么沒變? (速度)

  從中你發(fā)現(xiàn)了什么規(guī)律? 路程與時間的比值(也就是速度)相同

  (2)師:第二題的表中,時間增加,所走的路程也相應的增加,而且路程與時間的比值(速度)相同,那么我們就說路程和時間成正比例。(板書課題正比例)思考:速度一定時,路程和時間成正比例,那么單價一定時,購買蘋果應付的錢數(shù)和質量之間是什么關系?(正比例)

  結合二三題的表格,誰來說說成正比例必須具備幾個條件?(必須具備兩個條件:一是必須具備兩個變量,二是這兩個變量之間的比值一定)(黑板板書兩個條件)

  (4)師:也就是說,一個量增加或者減少,另一個量也跟著增加或者減少,在變化的過程中這兩個量的比值不變,我們就說這兩個量之間成正比例

  一句話:一個量變化,另一個量也發(fā)生變化,在變化的過程中這兩個量的比值不變,我們就說這兩個量之間成正比例(屏幕出示此句話)

  5、用字母表示正比例式子

  A、如果用s表示路程,t表示時間,那么路程與時間的關系可以怎么表示(表示為s=90t)

  B、如果用y和x表示兩個變量,k表示他們的比值,你能用字母表示出成正比例的量之間的'關系么?黑板板書y=kx(k 一定)(板書此關系式)

  師:現(xiàn)在你們會判斷兩個量是否成正比例么?下面我要考考大家,看誰能順利過關?

  匯報:(不成正比例,雖然小明歲數(shù)增加,爸爸的歲數(shù)也增加,但是小明的歲數(shù)與爸爸的歲數(shù)的比值隨著時間的變化而變化,是一個變量)

  (3)師小結:判斷兩個量是不是成正比例,不但要看一個量是否隨另一個量變化而變化,還要看這兩個變量的比值是不是一定,比值變了就不成正比例。

  三、鞏固練習

  1、判斷下面各題中的兩個變量是否成正比例,并說明理由。

  (1)每袋大米的質量一定,大米的總質量和袋數(shù)。( )

  (2)一個人的身高和年齡。 ( )

  (3)寬不變,長方形的周長與長。 ( )

  (4)當平行四邊形的底一定時,平行四邊形的面積與對應的高。( )

  3、找一找生活中成正比里的例子。看誰想得多?

  四、課堂總結

  通過這節(jié)課的學習,你有什么收獲

正比例教案14

  教學目標:

  1、知道與正比例函數(shù)的意義.

  2、能寫出實際問題中正比例關系與關系的解析式.

  3、滲透數(shù)學建模的思想,使學生體會到數(shù)學的抽象性和廣泛的應用性.

  4、激發(fā)學生學習數(shù)學的興趣,培養(yǎng)學生分析問題、解決問題的`能力.

  教學重點:對于與正比例函數(shù)概念的理解.

  教學難點:根據(jù)具體條件求與正比例函數(shù)的解析式.

  教學方法:結構教學法、以學生“再創(chuàng)造”為主的教學方法

  教學過程:

  1、復習舊課

  前面我們學習了函數(shù)的相關知識,(教師在黑板上畫出本章結構并讓學生說出前三節(jié)的內容)

  2、引入新課

  就象以前我們學習方程、一元一次方程;不等式、一元一次不等式的內容時一樣,我們在學習了函數(shù)這個概念以后,要學習一些具體的函數(shù),今天我們要學習的是.

  顧名思義,誰能根據(jù)這個名字,類比一元一次方程、一元一次不等式的概念能舉出一些的例子?(學生完全具備這種類比的能力,所以要快、不要耽誤太多時間叫幾個同學回答就可以了.教師將學生的正確的例子寫在黑板上)

  這些函數(shù)有什么共同特點呢?(注意根據(jù)學生情況適當引導,看能否歸納出一般結果.)不難看出函數(shù)都是用自變量的一次式表示的,可以寫成( )的形式.

  一般地,如果( 是常數(shù), )(括號內用紅字強調)那么y叫做x的.特別地,當b=0時, 就成為( 是常數(shù), )

  3、例題講解

  例1、某油管因地震破裂,導致每分鐘漏出原油30公升

  (1如果x 分鐘共漏出y 公升,寫出y與x之間的函數(shù)關系式

  (2)破裂3.5小時后,共漏出原油多少公升

正比例教案15

  教學內容:

  六年級下冊總復習83—85頁《正比例、反比例》。

  教學目標:

  (一)知識目標:

  (1)通過回顧與交流,鼓勵學生自己獨立整理知識,形成系統(tǒng)。

  (2)通過具體問題的認識進一步認識正比例、反比例的量。

  (二)數(shù)學思考與解決問題

  通過復習與整理加深對正、反比例意義的理解。并運用正、反比例的知識解決一些實際問題,為以后學習函數(shù)打下基礎。

  (三)情感態(tài)度

  培養(yǎng)學生認真思考的習慣,學會區(qū)分正反比例。

  教學重、難點:

  (1)進一步認識正、反比例的意義,并能運用正、反比例的意義解決實際問題。

  (2)培養(yǎng)學生的問題意識,不斷積累活動經驗,體會重要的數(shù)學思想。

  教法學法

  自主復習、小組交流、全班交流、互幫互學

  教學準備

  表格、、小黑板

  教學過程

  一、情境創(chuàng)設,導入復習

  1、判斷下面每題中的兩種量成什么比例關系?

  ①速度一定,路程和時間()②路程一定,速度和時間()

  ③單價一定,總價和數(shù)量()④全校學生做操,每行站的人數(shù)和站的行數(shù)()

  2、根據(jù)條件說出數(shù)學關系式,再說出兩種相關聯(lián)的.量成什么比例,并列出相應的等式。

  (1)一臺機床5小時加工40個零件,照這樣計算,8小時加工64個。

  (2)一列火車從甲地開往乙地,每小時行90千米,要行4小時;每小時行80千米,要行X小時。

  指名學生口答,老師板書。

  二、回顧整理,構建網(wǎng)絡

  (一)比的知識:

  1.誰來舉個例子說說什么是比?什么是比例?什么是比的基本性質?(引導學生列舉:“按比例分配”、“比例尺”、“圖形的放大與縮小”等例)

  2.說一說用比的知識可以解決哪些實際問題。

  讓學生體會比在解決實際問題時的應用。

  3.完成教科書p83“回顧與交流”的3題

  兩人一組,合作完成后,全班交流結果,讓學生比較后回答有什么發(fā)現(xiàn)。

  (二)比和分數(shù)、除法的聯(lián)系

  出示:a∶b=()(())=()÷()(b≠0)教師問:

  1.你會填寫這個的等式嗎?學生填好后,再問:

  2.你的根據(jù)是什么?(比和分數(shù)、除法的聯(lián)系)

  3.那么比和分數(shù)、除法的聯(lián)系是什么?它們的區(qū)別呢?

  4.b為什么不能等于0?小組議一議,再交流。

  5.誰來說說比的基本性質與分數(shù)的基本性質、商不變的規(guī)律?它們有什么聯(lián)系嗎,誰來說說?

  (1)判斷:比的前項和后項都乘或都除以相同的數(shù),比值不變。(讓學生說說為什么?)

  (2)填空:()(())=()÷()=()∶()(填好后展示學生不同的結果。)

  (三)比例尺的知識

  什么是比例尺?

  (四)正比例,反比例的知識:

  (1)小組合作:把有關正比例反比例的知識在小組內進行交流,整理成知識網(wǎng)絡圖。

  (2)班內交流,全班分享

  (3)全班同學進行優(yōu)化,形成知識網(wǎng)絡圖。

  變化的量---正比例(意義、圖象、應用)--反比例(意義、圖象、應用)---圖形的放縮---比例尺

  三:重點復習,強化提高:

  1.一輛汽車在高速路上行駛,速度保持在100千米/時,說一說汽車行駛的路程隨時間變化的情況,并用多種方式表示這兩個量之間的關系。

  (1)學生獨立思考

  (2)同桌交流

  3)全班交流

  a自然語言b列表c畫圖d關系式

  2.舉出生活中正、反比例的例子

  3.完成課本84頁鞏固與應用

  獨立完成,班內交流。

  四.自主檢測,完善提高:

  判斷并說明理由

  (1)出油率一定,香油的質量與芝麻的質量。

  (2)一捆100米長的電線,用去的長度與剩下的長度。

  (3)三角形的面積一定,它的底和高。

  (4)一個數(shù)與它的倒數(shù)。

  五、完成后班內交流,這節(jié)課你有什么收獲?

  板書設計

  正比例和反比例

  比比例、應用

  分數(shù)、比、除法之間的關系

  課后反思

  本課時有以下特點:

  1、抓住復習起點,以小組合作的形式自主討論復習,既增強了學生的主動性和自覺性,也面向全體學生進行查漏補缺。

  2、借助表格的方式來整理復習,更直觀地體會比和比例、正比例和反比例的知識點和不同之處。

  3、能整合所有的知識,運用多種方法解決簡單的實際問題,鞏固知識。

【正比例教案】相關文章:

《正比例》教案03-24

《正比例函數(shù)》教案02-14

《正比例的意義》教案12-09

《正比例的意義》教案(9篇)02-22

《正比例的意義》教案9篇02-17

正比例與反比例的教案11-01

《正比例反比例》教案03-07

正比例和反比例教案04-15

《正比例》教學反思05-16

《正比例》教學反思11-23

主站蜘蛛池模板: 色综合色天天久久婷婷基地| 久久综合久久美利坚合众国| 无码av大香线蕉伊人久久| 国产精品无码一区二区在线观一| 曰本女人与公拘交酡| 日韩亚洲av无码一区二区三区| 久久精品国产亚洲a∨麻豆| 男女野外做爰全过程69影院| 永久天堂网av手机版| 国产日产韩国精品视频| 性荡视频播放在线视频| 国产三级在线观看播放视频| 一边吃奶一边做动态图| 免费无遮挡无码永久在线观看视频| 亚洲成av人片在线观看无线| 欧洲熟妇色xxxx欧美老妇多毛网站| 久久久久人妻精品一区三寸蜜桃| 亚洲精品尤物av在线观看任我爽| 亚洲综合区图片小说区| 久久亚洲精品国产亚洲老地址| 成人年无码av片在线观看| 99视频精品全部在线观看| 狠狠色噜噜狠狠狠7777奇米| 亚洲人成人无码www影院| 人人爽人人爽人人片av亚洲| 亚洲成av人片无码不卡播放器| 无码日韩精品一区二区免费| 熟女体下毛荫荫黑森林| 久久丫精品忘忧草西安产品| 亚洲爆乳精品无码一区二区三区| 色妞www精品免费视频| 亚洲精品国产成人精品| 无码成人h免费视频在线观看| 亚洲色婷婷一区二区三区| 欧美性色黄大片www喷水| 无码h黄肉3d动漫在线观看| 日韩av无码一区二区三区| 每天更新的免费av片在线观看| 亚洲熟妇无码一区二区三区| 欧美乱妇高清无乱码免费| 久久亚洲sm情趣捆绑调教|