【實用】二次根式教案4篇
作為一位不辭辛勞的人民教師,可能需要進行教案編寫工作,借助教案可以更好地組織教學活動。那要怎么寫好教案呢?下面是小編為大家收集的二次根式教案4篇,歡迎大家借鑒與參考,希望對大家有所幫助。
二次根式教案 篇1
一、內容和內容解析
1.內容
二次根式的概念.
2.內容解析
本節課是在學生學習了平方根、算術平方根、立方根的概念,會用根號表示數的平方根、立方根,知道開方與乘方互為逆運算的基礎上,來學習二次根式的概念. 它不僅是對前面所學知識的綜合應用,也為后面學習二次根式的性質和四則運算打基礎.
教材先設置了三個實際問題,這些問題的結果都可以表示成二次根式的形式,它們都表示一些正數的算術平方根,由此引出二次根式的定義. 再通過例1討論了二次根式中被開方數字母的取值范圍的問題,加深學生對二次根式的定義的理解.
本節課的教學重點是:了解二次根式的概念;
二、目標和目標解析
1.教學目標
(1)體會研究二次根式是實際的需要.
(2)了解二次根式的概念.
2. 教學目標解析
(1)學生能用二次根式表示實際問題中的數量和數量關系,體會研究二次根式的必要性.
(2)學生能根據算術平方根的意義了解二次根式的概念,知道被開方數必須是非負數的理由,知道二次根式本身是一個非負數,會求二次根式中被開方數字母的取值范圍.
三、教學問題診斷分析
對于二次根式的定義,應側重讓學生理解 “ 的雙重非負性,”即被開方數 ≥0是非負數, 的算術平方根 ≥0也是非負數.教學時注意引導學生回憶在實數一章所學習的有關平方根的意義和特征,幫助學生理解這一要求,從而讓學生得出二次根式成立的條件,并運用被開方數是非負數這一條件進行二次根式有意義的判斷.
本節課的教學難點為:理解二次根式的雙重非負性.
四、教學過程設計
1.創設情境,提出問題
問題1你能用帶有根號的的式子填空嗎?
(1)面積為3 的正方形的邊長為_______,面積為S 的正方形的邊長為_______.
(2)一個長方形圍欄,長是寬的2 倍,面積為130?,則它的寬為______.
(3)一個物體從高處自由落下,落到地面所用的時間 t(單位:s)與開始落下的高度h(單位:)滿足關系 h =5t?,如果用含有h 的式子表示 t ,則t= _____.
師生活動:學生獨立完成上述問題,用算術平方根表示結果,教師進行適當引導和評價.
【設計意圖】讓學生在填空過程中初步感知二次根式與實際生活的緊密聯系,體會研究二次根式的必要性.
問題2 上面得到的式子 , , 分別表示什么意義?它們有什么共同特征?
師生活動:教師引導學生說出各式的意義,概括它們的共同特征:都表示一個非負數(包括字母或式子表示的非負數)的算術平方根.
【設計意圖】為概括二次根式的概念作鋪墊.
2.抽象概括,形成概念
問題3 你能用一個式子表示一個非負數的算術平方根嗎?
師生活動:學生小組討論,全班交流.教師由此給出二次根式的定義:一般地,我們把形如 (a≥0)的式子叫做二次根式,“ ”稱為二次根號.
【設計意圖】讓學生體會由特殊到一般的過程,培養學生的概括能力.
追問:在二次根式的概念中,為什么要強調“a≥0”?
師生活動:教師引導學生討論,知道二次根式被開方數必須是非負數的理由.
【設計意圖】進一步加深學生對二次根式被開方數必須是非負數的理解.
3.辨析概念,應用鞏固
例1 當 時怎樣的實數時, 在實數范圍內有意義?
師生活動:引導學生從概念出發進行思考,鞏固學生對二次根式的被開方數為非負數的理解.
例2 當 是怎樣的實數時, 在實數范圍內有意義? 呢?
師生活動:先讓學生獨立思考,再追問.
【設計意圖】在辨析中,加深學生對二次根式被開方數為非負數的理解.
問題4 你能比較 與0的大小嗎?
師生活動:通過分 和 這兩種情況的討論,比較 與0的大小,引導學生得出 ≥0的結論,強化學生對二次根式本身為非負數的理解,
【設計意圖】通過這一活動的設計,提高學生對所學知識的遷移能力和應用意識;培養學生分類討論和歸納概括的能力.
4.綜合運用,鞏固提高
練習1 完成教科書第3頁的練習.
練習2 當x 是什么實數時,下列各式有意義.
(1) ;(2) ;(3) ;(4) .
【設計意圖】 辨析二次根式的概念,確定二次根式有意義的條件.
【設計意圖】設計有一定綜合性的.題目,考查學生的靈活運用的能力,開闊學生的視野,訓練學生的思維.
5.總結反思
教師和學生一起回顧本節課所學主要內容,并請學生回答以下問題.
(1)本節課你學到了哪一類新的式子?
(2)二次根式有意義的條件是什么?二次根式的值的范圍是什么?
(3)二次根式與算術平方根有什么關系?
師生活動:教師引導,學生小結.
【設計意圖】:學生共同總結,互相取長補短,再一次突出本節課的學習重點,掌握解題方法.
6.布置作業:
教科書習題16.1第1,3,5, 7,10題.
五、目標檢測設計
1. 下列各式中,一定是二次根式的是( )
A. B. C. D.
【設計意圖】考查對二次根式概念的了解,要特別注意被開方數為非負數.
2. 當 時,二次根式 無意義.
【設計意圖】考查二次根式無意義的條件,即被開方數小于0,要注意審題.
3.當 時,二次根式 有最小值,其最小值是 .
【設計意圖】本題主要考查二次根式被開方數是非負數的靈活運用.
4.對于 ,小紅根據被開方數是非負數,得 出的取值范圍是 ≥ .小慧認為還應考慮分母不為0的情況.你認為小慧的想法正確嗎?試求出 的取值范圍.
【設計意圖】考查二次根式的被開方數為非負數和一個式子的分母不能為0,解題時需要綜合考慮.
二次根式教案 篇2
教學設計思想
新教材打破了舊教材從定義出發,由理論到理論,按部就班的舊格局,創造出從實踐到理論再回到實踐,由淺入深,符合認知結構的新模式。本節首先通過四個實際問題引出二次根式的概念,給出二次根式的意義。然后讓學生通過二次根式的意義和算術平方根的意義找出二次根式的三個性質。本節通過學生所熟悉的實際問題建立二次根式的概念,使學生在經歷將現實問題符號化的過程中,進一步體會二次根式的重要作用,發展學生的應用意識。
教學目標
知識與技能
1.知道什么是二次根式,并會用二次根式的意義解題;
2.熟記二次根式的`性質,并能靈活應用;
過程與方法
通過二次根式的概念和性質的學習,培養邏輯思維能力;
情感態度價值觀
1.經歷將現實問題符號化的過程,發展應用的意識;
2.通過二次根式性質的介紹滲透對稱性、規律性的數學美。
教學重點和難點
重點:(1)二次根式的意義;(2)二次根式中字母的取值范圍;
難點:確定二次根式中字母的取值范圍。
教學方法
啟發式、講練結合
教學媒體
多媒體
課時安排
1課時
二次根式教案 篇3
【 學習目標 】
1、知識與技能:了解二次根式的概念,能求根號內字母范圍,理解二次根式的雙重非負性,并能應用它解決相關問題。
2、過程與方法:進一步體會分類討論的數學思想。
3、情感、態度與價值觀:通過小組合作學習,體驗在合作探索中學習數學的樂趣。
【 學習重難點 】
1、重點:準確理解二次根式的概念,并能進行簡單的計算。
2、難點:準確理解二次根式的雙重非負性。
【 學習內容 】課本第2— 3頁
【 學習流程 】
一、 課前準備(預習學案見附件1)
學生在家中認真閱讀理解課本中相關內容的知識,并根據自己的理解完成預習學案。
二、 課堂教學
(一)合作學習階段。
教師出示課堂教學目標及引導材料,各學習小組結合本節課學習目標,根據課堂引導材料中得內容,以小組合作的形式,組內交流、總結,并記錄合作學習中碰到的問題。組內各成員根據課堂引導材料的要求在小組合作的前提下認真完成課堂引導材料。教師在巡視中觀察各小組合作學習的情況,并進行及時的`引導、點撥,對普遍存在的問題做好記錄。
(二)集體講授階段。(15分鐘左右)
1. 各小組推選代表依次對課堂引導材料中的問題進行解答,不足的本組成員可以補充。
2. 教師對合作學習中存在的普遍的不能解決的問題進行集體講解。
3. 各小組提出本組學習中存在的困惑,并請其他小組幫助解答,解答不了的由教師進行解答。
(三)當堂檢測階段
為了及時了解本節課學生的學習效果,及對本節課進行及時的鞏固,對學生進行當堂檢測,測試完試卷上交。
(注:合作學習階段與集體講授階段可以根據授課內容進行適當調整次序或交叉進行)
三、 課后作業(課后作業見附件2)
教師發放根據本節課所學內容制定的針對性作業,以幫助學生進一步鞏固提高課堂所學。
四、板書設計
課題:二次根式(1)
二次根式概念 例題 例題
二次根式性質
反思:
二次根式教案 篇4
1.請同學們回憶(≥0,b≥0)是如何得到的?
2.學生觀察下面的例子,并計算:
由學生總結上面兩個式的關系得:
類似地,請每個同學再舉一個例子,然后由這些特殊的例子,得出:
(≥0,b0)
使學生回憶起二次根式乘法的運算方法的推導過程.
類似地,請每個同學再舉一個例子,
請學生們思考為什么b的取值范圍變小了?
與學生一起寫清解題過程,提醒他們被開方式一定要開盡.
對比二次根式的乘法推導出除法的運算方法
增強學生的`自信心,并從一開始就使他們參與到推導過程中來.
對學生進一步強化被開方數的取值范圍,以及分母不能為零.
強化學生的解題格式一定要標準.
教學過程設計
問題與情境師生行為設計意圖
活動二自我檢測
活動三挑戰逆向思維
把反過來,就得到
(≥0,b0)
利用它就可以進行二次根式的化簡.
例2化簡:
(1)
(2)(b≥0).
解:(1)(2)練習2化簡:
(1)(2)活動四談談你的收獲
1.商的算術平方根的性質(注意公式成立的條件).
2.會利用商的算術平方根的性質進行簡單的二次根式的化簡.
找四名學生上黑板板演,其余學生在練習本上計算,然后再找學生指出不足.
二次根式的乘法公式可以逆用,那除法公式可以逆用嗎?
找學生口述解題過程,教師將過程寫在黑板上.
請學生仿照例題自己解決這兩道小題,組長檢查本組的學習情況.
請學生自己談收獲,并總結本節課的主要內容.
為了更快地發現學生的錯誤之處,以便糾正.
此處進行簡單處理是因為有二次根式的乘法公式的逆用作基礎理解并不難.
讓學困生在自己做題時有一個參照.
充分發揮組長的作用,盡可能在課堂上將問題解決.
【二次根式教案】相關文章:
二次根式教案11-10
二次根式的加減教案01-19
《二次根式的運算》的教案09-07
二次根式數學教案09-22
二次根式教案15篇02-16
二次根式教案(15篇)02-27
精選二次根式教案3篇08-04
二次根式教案(精選5篇)02-22
二次根式教案(精選11篇)04-13
二次根式教案匯編5篇02-03