精選二次根式教案3篇
在教學工作者開展教學活動前,總歸要編寫教案,借助教案可以提高教學質量,收到預期的教學效果。那么你有了解過教案嗎?以下是小編收集整理的二次根式教案3篇,希望對大家有所幫助。
二次根式教案 篇1
教學目標
課標要求:學生要學會學習、自主學習,要為學生終生學習打下堅實的基礎,根據教學大綱和新課標的要求,根據教材內容和學生的特點我確定了本節課的教學目標 1、了解二次根式的概念 2、了解二次根式的基本性質,經歷觀察、比較、總結二次根式的基本性質的過程,發展學生的歸納概括能力。 3、通過對二次根式的概念和性質的探究,提高數學探究能力和歸納表達能力。 4、學生經歷觀察、比較、總結和應用等數學活動,感受數學活動充滿了探索性與創造性,體驗發現的樂趣,并提高應用的意識。
教學重點:二次根式的概念和基本性質
教學難點:二次根式的基本性質的靈活運用
教法和學法
教學活動的本質是一種合作,一種交流。學生是數學學習的主人,教師是數學學習的組織者、引導者與合作者,本節課主要采用自主學習,合作探究,引領提升的方式展開教學。依據學生的年齡特點和已有的知識基礎,本節課注重加強知識間的縱向聯系,,拓展學生探索的空間,體現由具體到抽象的認識過程。為了為后續學習打下堅實的基礎,例如在“銳角三角函數”一章中,會遇到很多實際問題,在解決實際問題的過程中,要遇到將二次根式化成最簡二次根式等,本課適當加強練習,讓學生養成聯系和發展的觀點學習數學的習慣。
教學過程
活動一:根據學生已有知識探究二次根式的概念 1.探究二次根式概念 由四個實際問題(三個幾何問題,一個物理問題)入手,設置問題情境,讓學生感受到研究二次根式來源于生活又服務于生活。 思考:用帶有根號的式子填空,看看寫出的結果有什么特點? (1)要做一個兩條直角邊的長分別為7cm和4cm的三角尺,斜邊的長應為 cm
(2)面積為S的正方形的邊長為
(3)要修建一個面積為6.28m2的圓形噴水池,它的半徑為m(∏取3.14)
(4)一個物體從高處自由落下,落到地面所用的時間t(單位:s)與開始落下時的高度h(單位:m)滿足關系h=5t2.如果用含有h的式子表示t,則t= 學生發現所填結果都表示一個數的算術平方根,教師引導學生用一個式子表示這些有共同特點的式子。學生表示為,此時教師啟發學生回憶已學平方根的`性質讓學生總結出a這一條件。在此基礎上總結出二次根式的概念。 2.例題評析 例1:哪些為二次根式? 練習:x取何值時下列各式有意義,通過4小題的訓練,讓學生體會二次根式概念的初步應用。加深對二次根式定義的理解,并注重新舊知識間的聯系,用轉化的思想解決問題,總結出解題規律:求未知數的取值范圍即轉化為①被開方數大于等于0②分母不為0列不等式或不等式組解決問題。
活動二:探究二次根式的性質1 1.探究(a)與0的關系 學生分類討論探究出:(a)是一個非負數,此時歸納出二次根式的第一個性質:雙重非負性。培養學生的分類討論和概括能力。例2:,則變式:,
活動三:探究二次根式的性質2 探究()2=a(a)由課本具體的正數和零入手來研究二次根式的第二個性質,首先讓學生通過探究活動感受這條結論,然后再從算術平方根的意義出發,結合具體例子對這條結論進行分析,引導學生由具體到抽象,得出一般的結論,并發現開平方運算與平方運算的關系,培養學生由特殊到一般的思維方式,提高歸納、總結的能力。前兩題學生口述教師板書,后面的兩題由學生板演引導學生分析(2)(4)實質是積的乘方和分式的乘方 拓展:反之(a)如 為后面的化最簡二次根式(簡單的分母有理化)做好鋪墊。 例4:在實數范圍內分解因式
活動四:探究二次根式的性質3 3.探究 在活動三的基礎上出示課本第4頁的探究: 引導學生比較活動三與活動四探究中兩組題目的不同之處,活動三中的題目是對非負數先進行開平方運算,再進行平方運算;而活動四中的題目正好相反,是先進行平方運算,再進行開平方運算。再次由特殊到一般的讓學生歸納出二次根式的又一個性質。培養學生觀察、對比的能力和意識。 此時引導學生談一談對()2和的聯系和區別 相同點:①都有平方和開平方運算 ②運算結果都是非負數 ③僅當a時,()2= 不同點:①從形式和運算順序看:()2先開方后平方,先平方后開方 ②從a的取值范圍看:()2(a),(a為任意數) ③從運算結果看:()2=a(a),(a為任意數
二次根式教案 篇2
【教學目標】
1.運用法則
進行二次根式的乘除運算;
2.會用公式
化簡二次根式。
【教學重點】
運用
進行化簡或計算
【教學難點】
經歷二次根式的乘除法則的'探究過程
【教學過程】
一、情境創設:
1.復習舊知:什么是二次根式?已學過二次根式的哪些性質?
2.計算:
二、探索活動:
1.學生計算;
2.觀察上式及其運算結果,看看其中有什么規律?
3.概括:
得出:二次根式相乘,實際上就是把被開方數相乘,而根號不變。
將上面的公式逆向運用可得:
積的算術平方根,等于積中各因式的算術平方根的積。
三、例題講解:
1.計算:
2.化簡:
小結:如何化簡二次根式?
1.(關鍵)將被開方數因式分解或因數分解,使之出現“完全平方數”或“完全平方式”;
2.P62結果中,被開方數應不含能開得盡方的因數或因式。
四、課堂練習:
(一).P62 練習1、2
其中2中(5)
注意:
不是積的形式,要因數分解為36×16=242.
(二).P67 3 計算 (2)(4)
補充練習:
1.(x>0,y>0)
2.拓展與提高:
化簡:1).(a>0,b>0)
2).(y
2.若,求m的取值范圍。
☆3.已知:,求的值。
五、本課小結與作業:
小結:二次根式的乘法法則
作業:
1).課課練P9-10
2).補充習題
二次根式教案 篇3
一、內容解析
本節教材是在學生學習二次根式概念的基礎上,結合二次根式的概念和算術平方根的概念,通過觀察、歸納和思考得到二次根式的兩個基本性質.
對于二次根式的性質,教材沒有直接從算術平方根的意義得到,而是考慮學生的年齡特征,先通過 “探究”欄目中給出四個具體問題,讓學生學生根據算術平方根的意義,就具體數字進行分析得出結果,再分析這些結果的共同特征,由特殊到一般地歸納出結論.基于以上分析,確定本節課的教學重點為:理解二次根式的性質.
二、目標和目標解析
1.教學目標
(1)經歷探索二次根式的性質的過程,并理解其意義;
(2)會運用二次根式的性質進行二次根式的化簡;
(3)了解代數式的概念.
2.目標解析
(1)學生能根據具體數字分析和算術平方根的意義,由特殊到一般地歸納出二次根式的性質,會用符號表述這一性質;
(2)學生能靈活運用二次根式的性質進行二次根式的化簡;
(3)學生能從已學過的各種式子中,體會其共同特點,得出代數式的概念.
三、教學問題診斷分析
二次根式的性質是二次根式化簡和運算的重要基礎.學生根據二次根式的概念和算術平方根的意義,由特殊到一般地得出二次根式的性質后,重在能靈活運用二次根式的性質進行二次根式的化簡和解決一些綜合性較強的問題.由于學生初次學習二次根式的性質,對二次根式性質的靈活運用存在一定的困難,突破這一難點需要教師精心設計好每一道習題,讓學生在練習中進一步掌握二次根式的性質,培養其靈活運用的能力.
本節課的教學難點為:二次根式性質的靈活運用.
四、教學過程設計
1.探究性質1
問題1 你能解釋下列式子的含義嗎?
師生活動:教師引導學生說出每一個式子的含義.
【設計意圖】讓學生初步感知,這些式子都表示一個非負數的`算術平方根的平方.
問題2 根據算術平方根的意義填空,并說出得到結論的依據.
師生活動 學生獨立完成填空后,讓學生展示其思維過程,說出得到結論的依據.
【設計意圖】學生通過計算或根據算術平方根的意義得出結論,為歸納二次根式的性質1作鋪墊.
問題3 從以上的結論中你能發現什么規律?你能用一個式子表示這個規律嗎?
師生活動:引導學生歸納得出二次根式的性質: ( ≥0).
【設計意圖】讓學生經歷從特殊到一般的過程,概括出二次根式的性質1,培養學生抽象概括的能力.
例2 計算
(1)
(2)
師生活動:學生獨立完成,集體訂正.
【設計意圖】鞏固二次根式的性質1,學會靈活運用.
2.探究性質2
問題4 你能解釋下列式子的含義嗎?
師生活動:教師引導學生說出每一個式子的含義.
【設計意圖】讓學生初步感知,這些式子都表示一個數的平方的算術平方根.
問題5 根據算術平方根的意義填空,并說出得到結論的依據.
師生活動 學生獨立完成填空后,讓學生展示其思維過程,說出得到結論的依據.
【設計意圖】學生通過計算或根據算術平方根的意義得出結論,為歸納二次根式的性質2作鋪墊.
問題6 從以上的結論中你能發現什么規律?你能用一個式子表示這個規律嗎?
師生活動:引導學生歸納得出二次根式的性質: ( ≥0)
【設計意圖】讓學生經歷從特殊到一般的過程,概括出二次根式的性質2,培養學生抽象概括的能力.
例3 計算
(1)
(2)
師生活動:學生獨立完成,集體訂正.
【設計意圖】鞏固二次根式的性質2,學會靈活運用.
3.歸納代數式的概念
問題7 回顧我們學過的式子,如 ___________ ( ≥0),這些式子有哪些共同特征?
師生活動:學生概括式子的共同特征,得得出代數式的概念.
【設計意圖】學生通過觀察式子的共同特征,形成代數式的概念,培養學生的概括能力.
4.綜合運用
(1)算一算:
【設計意圖】設計有一定綜合性的題目,考查學生的靈活運用的能力,第(2)、(3)、(4)小題要特別注意結果的符號.
(2)想一想: 中, 的取值范圍是什么?當 ≥0時, 等于多少?當 時, 又等于多少?
【設計意圖】通過此問題的設計,加深學生對 的理解,開闊學生的視野,訓練學生的思維.
(3)談一談你對 與 的認識.
【設計意圖】加深學生對二次根式性質的理解.
5.總結反思
(1)你知道了二次根式的哪些性質?
(2)運用二次根式性質進行化簡需要注意什么?
(3)請談談發現二次根式性質的思考過程?
(4)想一想,到現在為止,你學習了哪幾類字母表示數得到的式子?說說你對代數式的認識.
6.布置作業:教科書習題16.1第2,4題.
【二次根式教案】相關文章:
二次根式教案11-10
《二次根式的運算》的教案09-07
二次根式的加減教案01-19
二次根式數學教案09-22
二次根式教案(精選11篇)04-13
二次根式教案(精選5篇)02-22
二次根式教案(15篇)02-27
二次根式教案15篇02-16
【實用】二次根式教案4篇10-12