- 相關推薦
《二次根式的運算》的教案
作為一位優秀的人民教師,時常會需要準備好教案,教案有利于教學水平的提高,有助于教研活動的開展。那么大家知道正規的教案是怎么寫的嗎?以下是小編整理的《二次根式的運算》的教案,僅供參考,歡迎大家閱讀。
《二次根式的運算》的教案1
教學目的:
1、在二次根式的混合運算中,使學生掌握應用有理化分母的方法化簡和計算二次根式;
2、會求二次根式的代數的值;
3、進一步提高學生的綜合運算能力。
教學重點:在二次根式的混合運算中,靈活選擇有理化分母的方法化簡二次根式
教學難點:正確進行二次根式的混合運算和求含有二次根式的代數式的值
教學過程:
一、二次根式的混合運算
例1 計算:
分析:(1)題是二次根式的加減運算,可先把前三個二次根式化最簡二次根式,把第四式的分母有理化,然后再進行二次根式的加減運算。
(2)題是含乘方、加、減和除法的混合運算,應按運算的順序進行計算,先算括號內的式子,最后進行除法運算。注意的計算。
練習1:P206 / 8--① P207 / 1①②
例2 計算
問:計算思路是什么?
答:先把第一人的括號內的式子通分,把第二個括號內的式子的分母有理化,再進行計算。
二、求代數式的值。 注意兩點:
(1)如果已知條件為含二次根式的式子,先把它化簡;
(2)如果代數式是含二次根式的式子,應先把代數式化簡,再求值。
例3 已知,求的值。
分析:多項式可轉化為用與表示的式子,因此可根據已知條件中的及的值。求得與的值。在計算中,先把及的式了有理化分母。可使計算簡便。
例4 已知,求的值。
觀察代數式的特點,請說出求這個代數式的值的思路。
答:所求的代數式中,相減的兩個式子的分母都含有二次根式,為化去它們的分母中的`根號,可以分別先把各自的分母有理化或進行]通分,把這個代數式化簡后,再求值。
三、小結
1、對于二次根式的混合混合運算。應根據二次根式的加、減、乘除和乘方運算的順序進行,即先進行乘方運算,再進行乘、除運算,最后進行加、減運算。如果有括號,先進行括號內的式子的運算,運算結果要化為最簡二次根式。
2、在代數式求值問題中,如果已知條件所求式子中有含二次根式(或分式)的式子,應先把它們化簡,然后再求值。
3、在進行二次根式的混合運算時,要根據題目特點,靈活選擇解題方法,目的在于使計算更簡捷。
四、作業
P206 / 7 P206 / 8---②③
《二次根式的運算》的教案2
目標
1.熟練地運用二次根式的性質化簡二次根式;
2.會運用二次根式解決簡單的實際問題;
3.進一步體驗二次根式及其運算的實際意義和應用價值。
教學設想
本節課的重點是:二次根式及其運算的實際應用;難點是:例7涉及多方面的知識和綜合運用,思路比較復雜。
教學程序與策略
一、預習檢測:
1、解決節前問題:
如圖,架在消防車上的云梯AB長為15m,AD:BD=1:0.6,云梯底部離地面的距離BC為2m。你能求出云梯的頂端離地面的距離AE嗎?
歸納:
在日常生活和生產實際中,我們在解決一些問題,尤其是涉及直角三角形邊長計算的問題時經常用到二次根式及其運算。
二、合作交流:
1、:如圖,扶梯AB的坡比(BE與AE的長度之比)為1:0.8,滑梯CD的坡比為1:1.6,AE=米,BC= CD。一男孩從扶梯走到滑梯的頂部,然后從滑梯滑下,他經過了多少路程(結果要求先化簡,再取近似值,精確到0.01米)
讓學生有充分的時間閱讀問題,并結合圖形分析問題:
(1)所求的路程實際上是哪些線段的和?哪些線段的長是已知的?哪些線段的.長是未知的?它們之間有什么關系?
(2)列出的算式中有哪些運算?能化簡嗎?
注意解題格式
教學程序與策略
三、鞏固練習:
完成課本P17、1,組長檢查反饋;
四、拓展提高:
1:如圖是一張等腰三角形彩色紙,AC=BC=40cm,將斜邊上的高CD四等分,然后裁出3張寬度相等的長方形紙條。
(1)分別求出3張長方形紙條的長度。
(2)若用這些紙條為一幅正方形美術作品鑲邊(紙條不重疊),如右圖,正方形美術作品的面積最大不能超過多少xxcm。
師生共同分析解題思路,請學生寫出解題過程。
五、課堂小結:
1、談一談:本節課你有什么收獲?
2、運用二次根式解決簡單的實際問題時應注意的的問題
六、堂堂清
1:作業本(2)
2:課本P17頁:第4、5題選做。
《二次根式的運算》的教案3
一、教學目標
1.理解分母有理化與除法的關系.
2.掌握二次根式的分母有理化.
3.通過二次根式的分母有理化,培養學生的運算能力.
4.通過學習分母有理化與除法的關系,向學生滲透轉化的數學思想
二、教學設計
小結、歸納、提高
三、重點、難點解決辦法
1.教學重點:分母有理化.
2.教學難點:分母有理化的技巧.
四、課時安排
1課時
五、教具學具準備
投影儀、膠片、多媒體
六、師生互動活動設計
復習小結,歸納整理,應用提高,以學生活動為主
七、教學過程
【復習提問】
二次根式混合運算的步驟、運算順序、互為有理化因式.
例1 說出下列算式的運算步驟和順序:
(1) (先乘除,后加減).
(2) (有括號,先去括號;不宜先進行括號內的運算).
(3)辨別有理化因式:
有理化因式: 與 , 與 , 與 …
不是有理化因式: 與 , 與 …
化簡一個式子,如果分母是二次根式,采用分子、分母同乘以分母的`有理化因式的方法(依據分式的基本性質).
例如:等式子的化簡,如果分母是兩個二次根式的和,應該怎樣化簡?
引入新課題.
【引入新課】
化簡式子 ,乘以什么樣的式子,分母中的根式符號可去掉,結論是分子與分母要同乘以 的有理化因式,而這個式子就是 ,從而可將式子化簡.
例2 把下列各式的分母有理化:
(1) ; (2) ; (3)
解:略.
注:通過例題的講解,使學生理解和掌握化簡的步驟、關鍵問題、化簡的依據.式子的化簡,若分子與分母可分解因式,則可先分解因式,再約分,使化簡變得簡單.
【《二次根式的運算》的教案】相關文章:
二次根式教案11-10
二次根式的加減教案01-19
精選二次根式教案3篇08-04
二次根式教案(精選5篇)02-22
二次根式教案(精選11篇)04-13
二次根式數學教案09-22
二次根式教案15篇02-16
二次根式教案(15篇)02-27
【實用】二次根式教案4篇10-12