絕對值教案
作為一無名無私奉獻的教育工作者,常常要根據教學需要編寫教案,教案是實施教學的主要依據,有著至關重要的作用。那么你有了解過教案嗎?以下是小編幫大家整理的絕對值教案,僅供參考,大家一起來看看吧。
絕對值教案1
一、學習與導學目標:
知識與技能:會求出一個數的絕對值,能利用數軸及絕對值的知識,比較兩個有理數的大小;
過程與方法:經歷絕對值概念的形成,初步體會數形結合的思想方法,豐富解決問題的策略;
情感態度:通過創設情境,初步感悟學習絕對值的必要性,促進責任心的.形成。
二、學程與導程活動:
A、創設情境(幻燈片或掛圖)
1、兩輛汽車,其一向東行駛10km,另一向西行駛8km。為了區別,可規定向東行駛為正,則分別記作+10km和-8km。但在計算出租車收費,汽車行駛所耗的汽油,起主要作用的是汽車行駛的路程,而不是行駛的方向。此時,行駛路程則分別記作10km和8km。
再如測量誤差問題、排球重量誰更接近標準問題
2、在討論數軸上的點與原點的距離時,只需要觀察它與原點相隔多少個單位長度,與位于原點何方無關。
B、學習概念:
1、我們把在數軸上表示數a的點與原點的距離叫做數a的絕對值(absolute value),記作︱a︱(幻燈片)。因此,上述+10,-8的絕對值分別是10,8。
如在數軸上表示數-6的點和表示數6的點與原點的距離都是6,所以,-6和6的絕對值都是6,記作︱-6︱=6,︱6︱=6。(互為相反數的兩個數的絕對值相同)
2、嘗試回答(1)︱+2︱= ,︱1/5︱= ,︱+8.2︱= ;
(2)︱-3︱= ,︱-0.2︱= ,︱-8.2︱= ;
(3)︱0︱= 。(幻燈片)
思考:你能從中發現什么規律?引導學生得出:(幻燈片)
性質:一個正數的絕對值是它本身;
一個負數的絕對值是它的相反數;
零的絕對值是零。
如果用字母a表示有理數,上述性質可表述為:
當a是正數時,︱a︱=a;
當a是負數時,︱a︱=-a;
當a=0時,︱a︱=0。
解答課本P19/7及P15練習,由P19/7體會絕對值在實際中的應用,由練習1體會上面的三個等式,由練習2中提到的絕對值大小、數軸,引出問題:
在引入負數以后,如何比較兩個數的大小,尤其是兩個負數的大小?
3、讓我們仍然回到實際中去看看有怎樣的啟發,引導閱讀P16(幻燈片)。
顯然,結合問題的實際意義不難得到:-4-202。
因此,在數軸上你有何發現?生討論后發現:從左往右表示的數越來越大。
再找幾個量試試是否如此?這些數的絕對值的大小如何?(可利用P19/6,8為素材)
通過以上探究活動得到:正數大于0,0大于負數,正數大于負數;
兩個負數,絕對值大的反而小。
4、師生活動比較下列各對數的大。篜17例,P18練習。
5、師生小結歸納(幻燈片)
三、筆記與板書提綱:
1、 幻燈片
2、 師生板演練習P15/1
四、練習與拓展選題:
P19/4,5,9,10
絕對值教案2
教學目標:
知識目標:
。1)理解絕對值的概念及表示法。
(2)理解數的絕對值的幾何意義。
能力目標:
。1)掌握求一個數的絕對值及有關的簡單計算
(2)掌握絕對值等于某一正數的有理數的求法,探索絕對值的簡單應用。
情感目標:讓學生經歷絕對值的產生過程,體會數形結合思想。
教學重點、難點:
重點:絕對值的概念和求一個數的絕對值。
難點:絕對值的幾何意義。
教學手段:
多媒體(powerpoint)教學與板書相結合。
教學過程:
一、新課引入
我們已經知道有理數在日常生活中應用廣泛,與生產實踐聯系緊密,用正、負數可以來表示相反意義的量,而數軸使我們直觀的感受到有理數中正、負數的區別和數在數軸上相應的位置。
乘城市中的出租車去逛商店是我們經常經歷的事,其中的數量關系與我們所學的有理數、數軸有密切聯系。例如有2位同學在書店購買書籍后回家,一位同學乘上甲出租車向東行駛10Km到達A處,另一位同學乘上乙出租車向西行駛10Km到達B處。
二、合作學習
把全班同學分4—5組分組討論完成下面的三個問題
1:描述請大家用數軸來表示這一過程(記向東行駛的里程數為正)
2:思考兩位同學付費額度是否一樣?為什么?
3:結論付費額度與行駛方向有沒有關系?
然后請各組代表總結發言:(鼓勵學生積極參與,并給予高度的評價)
這兩位同學由于乘車離開書店的距離一樣,所以付費額度也是一樣的,與行駛方向無關。說明在數軸上的A(+10)、B(—10)兩點到原點(書店)的距離是一樣的,都是10。同樣數軸上+5和—5兩點到原點的距離也是一樣的。
我們把一個數在數軸上對應的`點到原點的距離叫做這個數的絕對值。(注意是離開原點的距離)
如數軸上表示-5的點到原點的距離是5,所以—5的絕對值是5,記作;+5的絕對值也是5,記作。其實際意義是:數軸上+5這個點到原點的距離為5。(強調絕對值符號的書寫格式)
三、課內練習
1、求下列各數的絕對值:-1.60-10+10同時說出它們的幾何意義。
2、說出下列各數的絕對值:-7-2.0501000
由上述兩題可概括出:(在教師的引導下讓學生得出結論)
一個正數的絕對值是它本身,一個負數的絕對值是它的相反數,零的絕對值是零,互為相反的兩個數的絕對值相等。(注意一個數的絕對值不可能是負數,而是非負數。)
五、探究學習
1、某人因工作需要租出租車從A站出發,先向南行駛6Km至B處,后向北行駛10Km至C處,接著又向南行駛7Km至D處,最后又向北行駛2Km至E處。
請通過列式計算回答下列兩個問題:
。1)這個人乘車一共行駛了多少千米?
。2)這個人最后的目的地在離出發地的什么方向上,相隔多少千米?
2、寫出絕對值小于3的整數,并把它們記在數軸上。
六、小結
一頭牛耕耘在一塊田地上,忙碌了一整天,表面上它在原地踏步,沒有踏出這塊土地,但我們說,它付出了艱辛和汗水,因為它所走過的距離之和,有時候我們是無法想象的。這就是今天所學的絕對值的意義所在。所以絕對值是不考慮方向意義時的一種數值表示。
七、布置作業
做作業本中相應的部分。
絕對值教案3
一、知識與技能
(1)借助數軸初步理解絕對值的概念,能求一個數的絕對值。
(2)通過應用絕對值解決實際問題,體會絕對值的意義和作用。
二、過程與方法
通過觀察實例及絕對值的幾何意義,探索一個數的絕對值與這個數之間的關系,培養學生語言描述能力。
三、情感態度與價值觀
培養學生積極參與探索活動,體會數形結合的方法。
教學重、難點與關鍵
1.重點:正確理解絕對值的.概念,能求一個數的絕對值。
2.難點:正確理解絕對值的幾何意義和代數意義。
3.關鍵:借助數軸理解絕對值的幾何意義,根據絕對值定義和相反數的概念,理解絕對值的代數意義。
四、教學過程
1.復習提問,新課引入
2.什么叫互為相反數?
3.在數軸上表示互為相反數的兩個點和原點的位置關系怎樣?
五、新授
在一些量的計算中,有時并不注意其方向,例如,為了計算汽車行駛所耗的油量,起作用的是汽車行駛的路程而不是行駛的方向。
1.觀察課本第11頁圖1.2-5,回答:
(1)兩輛汽車行駛的路線相同嗎?
(2)它們行駛路程的遠近相同嗎?
這兩輛車行駛的路線不同(方向相反),但行駛的路程的遠近相同,都是10km.
課本圖1.2-5中表示-10的點B和表示10的點A離開原點的距離都是10,我們就把這個距離10叫做數-10、10的絕對值。
一般地,數軸上表示數a的點與原點的距離叫做數a的絕對值,記作│a│。
這里的數a可以是正數、負數和0.
【絕對值教案】相關文章:
《絕對值》教案07-12
絕對值教案 15篇02-13
絕對值教學反思(精選7篇)09-26
教案中班教案07-15
高中教案教案03-05
教案中班教案[精選]09-15
教案幼兒中班教案02-15
[優秀]教案中班教案01-05
中班安全教案教案07-17