《最大公因數》教學反思
作為一名優秀的人民教師,我們的工作之一就是課堂教學,通過教學反思能很快的發現自己的講課缺點,那么什么樣的教學反思才是好的呢?下面是小編為大家收集的《最大公因數》教學反思,歡迎大家借鑒與參考,希望對大家有所幫助。
《最大公因數》教學反思1
《兩三位數除以一位數》商是兩位數是在學生學習了商是三位數和有余數除法的基礎上進行的,它是學習除數是多位數除法的基礎。因此要在引導學生解決具體問題的過程中,切實理解算理,掌握計算方法。
1、聯系舊知,激發興趣
本節課我有意識的在一開始設計了搶答環節,讓學生判斷大屏幕上幾道題目的商的位數,進而發現不同,激發興趣,引入本節課的學習。從效果上看,學生在判斷的過程中比較感興趣,并能初步感受與舊知的`聯系與不同,達到了預期的目的。
2、放手學生,設置大問題
本節課我在這方面做的不好。在擺小棒理解算理環節,我領的比較多,學生和老師一問一答,比如:“先分什么?再分什么?每份是多少”等,雖然學生最后也弄明白了該如何分小棒,但學生的能力沒有得到提高。在于老師的建議下,在重建設計中,我會注意放手,設置大問題。比如:“請同學們看著大屏幕上的小棒,想一想應該怎樣分呢?先自己想一想,然后同桌交流一下。”讓學生帶著問題思考,在思考中考慮擺小棒的全過程,而不是想一開始那樣,思路被割裂開了。之后再全班交流,教師也可適當引領點撥,但這和我之前的設計感覺就不一樣了,后者更能體現學生主體地位。在這方面,我今后還應提高意識,不斷實踐。
3、設計新穎的練習題,增多練習內容。
計算教學,單純的讓學生計算勢必會使學生產生厭倦。我聯系學生實際和生活實際,設計出多種多樣的練習題,比如:計算之后讓學生思考問題“想一想:三位數除以一位數,什么時候商是三位數,什么時候商是兩位數?”或讓學生“火眼金睛”辨別對錯,或讓學生在解決實際問題中說一說先算什么再算什么,感受解決實際問題的一般環節,將思路滲透到日常教學中,或在最后讓學生根據所學再來一組比賽等,結合學生不同的計算階段提出不同的要求和練習形式,使單調枯燥的計算練習變得生動有趣,達到了較好的教學效果。
我將以本次講課為契機,在今后的教學中應用本次活動學到的知識,加以實踐,不斷提高自身的教學水平。
《最大公因數》教學反思2
“因數和倍數”的知識,向來是小學數學教學的難點。“最大公因數”這節課是在學生掌握了因數、倍數、找因數的基礎上進行的,通過這節課的學習,學生會說出兩個數的公因數和最大公因數,會求兩個數的最大公因數,并為后面學習分數的約分打好基礎。反思這節課我認為有以下幾點:
一、精心設計數學活動,讓學生大膽探究。
1、通過找8和12的因數,引出公因數的概念。
教師引導學生先寫出8和12的因數,再觀察發現8和12有公有的因數,自然引出了公因數的.概念。然后通過集合圈的形式,直觀呈現什么是公因數,什么又是最大公因數。促進學生建立”公因數和最大公因數”的概念。
2、通過找18和27的最大公因數,掌握找最大公因數的方法。
掌握了公因數的概念之后,教師放手給予學生足夠的時間,讓學生自主探究找最大公因數的方法。交流反饋時,考慮到中下水平的學生,教師只匯報了書本中的三種基本方法,并沒有提到短除法。
二、思路清晰,環環相扣。
本節課,教師從認識公因數——理解最大公因數——探究找最大公因數的方法——相應的練習鞏固這幾個環節入手,每個環節都是層層遞進,環環相扣,促進了學生對概念的理解。
《數學課程標準》指出:“學生是學習的主人,教師是數學學習的組織者、引導者與合作者。”在本節課中,我努力將找最大公因數的概念教學課,設計成為學生探索問題,解決問題的過程,各個環節的學習流程,體現了教師是組織者——提供數學學習的材料;引導者——引導學生利用各種途徑找到公因數,最大公因數;合作者——與學生共同探討規律。在整個教學的過程中,學生真正成了課堂學習的主人,尋找最大公因數的方法是通過學生積極主動地探索以及不斷地中驗證得到的,所以整節課學生個性得到發揮。
《最大公因數》教學反思3
公因數與最大公因數這一課教材設計了一個用邊長6厘米和4厘米正方形鋪長18厘米,寬12厘米長方形的問題,讓學生在解決實際問題中探索公因數的認識。因此,在教學中要重視通過嘗試解決問題讓學生聯系已有的知識來引入公因數的認識。使學生初步體會學習公因數在解決實際問題中有著重要作用。
這節課的上課情況感覺較好,課堂比較流暢,重難點也都注意到了,但是通過學生作業反饋情況來看,部分學生在尋找公因數和最大公因數時,容易出現漏掉因數的情況,如9的因數容易漏掉因數3等。在寫公因數的示意圖時,部分學生出現中間寫了公因數后,兩邊還是將所有因數都寫了進去,這一情況在預設時我雖然想到了學生會錯,也在課堂上進行了說明,但是少數學生還是出現了錯誤。
用例舉的策略找出所有公因數的教學中,教材上有種層次不同學生可以掌握的方法參考,在這里的教學中我只是參照教材注重了這兩種方法的講解,這里教材的應是要求學生有序地列舉就行了,不同水平的學生采用的'方法可以不一樣,因此,在這部分內容的教學時,有些學生運用了一些比較獨特的方法尋找公因數,教師應該給予肯定,說明只要有序地列舉出因數來尋找公因數就可以了。但是,對于學生出現的各種方法可以讓學生進行對比,體會哪種方法更好,更適合自己,進而對自己的算法進行優化。
《最大公因數》教學反思4
日本著名數學教育家米山國藏指出:“作為知識的數學出校門不到兩年可能就忘了,唯有深深銘記在頭腦中的是數學的精神,數學的思想、研究的方法和著眼點等,這些隨時隨地發生作用,使他們終身受益。”從這個教學的設計中我們可以看到,教學中不只是讓學生接受一個概念知識或一種求最大公約數的方法;不只是注重數學形式層面的教學,而是更重視數學發現層面的教學,即讓學生在經歷“數學家”解決問題的過程中去理解、去感受一種數學的思想和觀念──數學化思想。學生先是感知地板磚中隱含的數學,會用約數、倍數知識解釋簡單的生活現象,進而思考并嘗試解決畫廊內裝飾畫的設計,學生自然會聯想到地板磚中數學知識。但是,從解釋到應用設計,在沒有學習公約數的情況下會存在較大的難度。于是,創設了做數學的空間。讓他們在設計正方形的過程中,逐漸感知公約數的'存在,建立了解決這種問題的數學模型。再反思與總結,引導學生自己創造了“公約數”與“最大公約數”的概念。
數學化思想觀念是指用數學眼光去認識和處理周圍事物或數學問題,可以培養學生良好的“用數學”意識,使數學關系成為學生的一種思維模式。而我們的課堂中,大多還是圍繞知識就事論事,沒有從形成學生思維模式的角度去展開知識形成和問題解決的思維過程,去注重現代的數學思想,去隱含重要的數學方法,這樣,學生學到的只是知識的堆砌,沒有自主的發展和對數學本質的領悟。
《最大公因數》教學反思5
本課是在學生已經理解和掌握倍數、因數的含義,初步學會找一個數的倍數和因數,知道一個數的倍數和因數的特點的基礎上進行教學的。這部分內容既是“數與代數”領域基礎知識的重要組成部分,又是進一步學習約分和通分以及分數四則計算的基礎。
第一節課,根據教材是以鋪地磚的'生活實際作為切入點,要鋪整分米數的地磚而且要求要整數塊,引入了求兩個數的公因數的必要性。教材主要的教學方法是先分別求出兩個數的因數,并按照從大到小的順序排列出來,從而找出兩個數的公有因數,稱為這兩個數的公因數,其中最大的數就是這兩個數的最大公因數。通過例1的教學后,我引導學生總結出求兩數的公因數以及最大公因數的方法。練習時發現部分學生還是容易在找一個數的因數的有疏漏,導致求出來的公因數和最大公因數出錯。
第二節課,我引入了求最大公因數的另一種方法,分解質因數法,介紹用短除法求兩個數的最大公因數。這種方法學生掌握起來比較容易,但也發現部分學生沒有除盡,最后的商不是互質數,導致找錯最大公因數。
不過相對于第一鐘方法,第二種方法在書寫上更簡便,學生解題時還是比較容易理解,寫起來也比較簡潔,大部分學生在求幾個數的最大公因數時還會選擇第二種方法。當然,我還是鼓勵學生選擇自己喜歡的方法,關鍵是能理解,懂應用。
《最大公因數》教學反思6
分析基礎知識:本單元是在學生已經理解和掌握倍數、因數的含義,初步學會找一個數的倍數和因數,知道一個數的倍數和因數的特點的基礎上進行教學的。這部分內容既是“數與代數”領域基礎知識的重要組成部分,又是進一步學習約分和通分以及分數四則計算的基礎。教材分兩段安排教學內容:第一段,認識公倍數、最小公倍數,探索找兩個數的最小公倍數的方法;第二段,認識公因數、最大公因數,探索找兩個數的最大公因數的方法。此外,在本單元的最后還安排了實踐與綜合應用《數字與信息》。
一、借助操作活動,經歷概念的形成過程。
以往教學公因數的概念,通常是直接找出兩個自然數的因數,然后讓學生發現有的因數是兩個數公有的,從而揭示公因數和最大公因數的概念。本單元教材注意以直觀的操作活動,讓學生經歷公因數和最大公因數概念的形成過程。這樣安排有兩點好處:一是學生通過操作活動,能體會公倍數和公因數的實際背景,加深對抽象概念的理解;二是有利于改善學習方式,便于學生通過操作和交流經歷學習過程。在這節課上,讓學生按要求自主操作,發現用邊長6厘米的正方形正好鋪滿長18厘米,寬12厘米的長方形。在發現結果的同時,還引導學生聯系除法算式進行思考,對直觀操作活動的初步抽象。再把初步發現的結論進行類推,發現用邊長1厘米、2厘米、3厘米6厘米的正方形都正好鋪滿長18厘米,寬12厘米的長方形。在此基礎上,引導學生思考1、2、3、6這些數和18、12有什么關系。這時揭示公因數和最大公因數的概念,突出概念的內涵是“既是……又是……”即“公有”。并在此基礎上,借助直觀的集合圖顯示公因數的意義。實實在在讓學生經歷了概念的`形成過程,效果較好。
二、預設探究過程,增強學生主體意識。
例3中,教師宣布游戲規則后,放手讓學生動手操作,直觀感知——思考原因——想象延伸——討論思辨——明確意義。例4更是學生探究廣闊的平臺,教師拋出問題后,讓學生獨立探究。為了解決問題,學生充分調動了已有知識經驗、方法、技能,八仙過海各顯神通,找出了各種求“12和18的公因數和最大公因數”的方法。在這個過程中,由學生自己建構了公因數和最大公因數的概念,是真正主動探索知識的建構者,而不是模仿者,充分的發掘了學生的自主意識,也充分體現了教師駕馭教材,調控學生的能力。
三、重視方法和策略的滲透,提高學生學習能力。
課程標準只要求在1~100的自然數中,能找出10以內兩個自然數的公倍數和最小公倍數,二是只要求在1~100的自然數中,能找出兩個自然數的公因數和最大公因數,而不是用分解質因數的方法求出公倍數或公因數。不教學用分解質因數的方法求最小公倍數和最大公因數還有兩個原因:一是通過列舉出兩個數的倍數或因數的方法,找出公倍數或公因數。突出對公倍數和公因數意義的理解;二是學生對用短除的形式求最大公因數和最小公倍數的算理理解有困難,減輕學生的學習負擔。所以在教學找公倍數或公因數時,應提倡思考方法多樣化。例4教學中,學生得出了三種方法來尋找12和18的公因數和最大公因數。(當然到底是三種還是兩種有待商榷,不過在這里,為了便于比較我們姑且稱之為三種吧)這就存在了一個方法優化的過程,哪一種方法會更簡單?通過對比,大多數學生贊同方法二。通過討論,引導學生以后解決此類問題時可以多運用較好的方法二。在這中間教師注意到了引導、小結、鼓勵,師生共同得出結論。
復習題中回顧了四年級知識基礎、列舉法和標記法,在例3中,學生思考“還有哪些邊長整厘米的正方形紙片也能正好鋪滿這個長方形?”時就有了基礎。例4中,學生也知道用列舉法和標記法來解決問題。
特別是用集合圖來表示因數和公因數的教學值得一提。有趣的游戲,預料中的爭執,恰到好處的體現了圖的妙用,圖的填法比一步步教學生如何填更有效,也更不易遺忘。練習五,第一題在填完集合圖后對公有因數和獨有因數意義的的提升,為下面的學習作了伏筆。體會初步的集合思想。
練一練,并沒有局限于畫畫△、○,找找公因數和最大公因數,而是進一步指導學生觀察,發現公因數都比小的數小(18和30中,18是小的數),在18的因數中找公因數的確更快、更好些。
所以請老師們在平時的教學中也去分析、思考,把握例題和練習中每個需要提升之處,在課堂中時時注意方法和策略的滲透,較好地用實這套教材。
《最大公因數》教學反思7
《公因數和最大公因數》這部分內容是在學生理解因數與倍數的相互關系,會找1~100的自然數的因數,并且在學習面積概念時積累了“密鋪”的活動經驗開展教學的。對于《公因數和最大公因數》這樣一節概念課的教學,其教學重、難點我認為就是對“公”字意義的理解,也就是如何體驗這個數既是一個數的因數,又是另一個數的因數,才是兩個數“公有”的因數。為了突出本節課的教學重點、突破教學難點,結合我們本學期的教研主題“如何設計有效的教學活動,達成教學目標”,我主要從以下幾方面入手來嘗試教學:
一、重視活動體驗,讓學生經歷數學概念的形成過程。
第一次猜想:一個長方形,長4厘米,寬2厘米。如果用同樣大的邊長是整厘米數的正方形來擺,剛好擺滿沒有剩余,可以選邊長是幾厘米的正方形?讓學生帶著自己的思考去操作驗證,在操作中體會“同樣大小的正方形”、“擺滿沒有剩余”,初步感知正方形既要把長方形的長擺滿沒有剩余,又要把長方形的寬擺滿沒有剩余。
第二次猜想:現在把長方形變大,長6厘米,寬4厘米,同樣的要求,這次正方形的邊長可以是幾厘米?學生可以熟練地操作驗證,在活動體驗和交流中進一步感知選擇正方形時既要保證長方形的長擺滿沒有剩余,又要保證長方形的寬擺滿沒有剩余。
第三次猜想:繼續變大,長18厘米,寬12厘米長方形,還是同樣的要求,用同樣大的小正方形來擺,剛好擺滿沒有剩余,這次可以選邊長是幾厘米的正方形呢?學生繼續操作驗證。這時學生已經有了前兩次的操作感知,積累了充分的活動經驗,這些活動經驗可以支撐他們去推理、想象,找到能“擺滿沒有剩余”的本質,從而從整體感知正方形邊長的規律。
然后,發揮教師的主導作用:“我們前后共擺了三個長方形,得到了黑板上的這些數據。仔細想一想,這些正方形的邊長和什么有關?有怎樣的關系呢?”引導學生觀察數據,發現規律,引出公因數和最大公因數的概念。
通過創設以上教學活動,讓學生在活動中實實在在地經歷了公因數產生的過程,積累豐富的活動經驗,充分體驗公因數的意義。
二、借助幾何直觀,增進學生對概念意義的理解。
通過上面的操作體驗和思考認知,學生認識了公因數和最大公因數,又經歷了找公因數和最大公因數的過程,學生能感知“因數”、“公因數”、“最大公因數”這三個概念之間存在著一些聯系。為了幫助學生深入地理解概念,提出問題:“對比這三個概念,現在你能說說它們之間的聯系與區別嗎?可以選其中兩個說一說。”引導學生進一步地思考。這時學生交流:“‘因數’是一個數的,而‘公因數’是兩個或兩個以上的數公有的”、“‘最大公因數’首先它也是‘公因數’中的一個,而且是‘公因數’中最大的一個。”根據學生的交流,我通過課件,借助韋恩圖形象直觀地演示了“因數”與“公因數”、“公因數”與“最大公因數”之間的關系,增進了學生對概念意義的理解。
三、通過實際問題,溝通數學概念與現實世界的聯系。
在學生充分理解區分了“因數”、“公因數”、“最大公因數”三個概念之后,提出問題:“一根彩帶長16分米,如果要截成小段來裝飾包裝盒,要求每段一樣長且剪完沒有剩余,每段可以是幾分米?(選整分米數)”學生想到:這是個用因數的知識解決的`問題,求每段可以是幾分米,也就是求16的因數。這時,引導學生改編成一個用公因數來解決的問題,學生首先想到了
少需要兩個數據,于是有的學生想到可以改編成:“兩條彩帶,一條16分米,一條12分米。把它們截成同樣長的小段且沒有剩余,每段可以是幾分米?(選整分米數)”這樣的問題。在學生思考的過程,既是在進一步理解概念的意義,又找到了“公因數”、“最大公因數”概念的現實意義,培養了學生的數學抽象能力。
一節課下來,我發現學生是最棒的!在不斷地實踐探索中,他們的認識不斷提升,我仿佛聽得到他們思維拔節的聲音。
當然,仔細琢磨,這節課還有很多可圈可點之處,如:
1、在三次操作之后,找正方形邊長與長方形的長和寬有什么關系環節,有的孩子不能用數學的眼光去觀察、去思考,還停留在操作上,這就說明作為老師,在這兩個環節之間沒有為孩子搭建起合適的橋梁,沒有幫孩子找到一個好的思維支點。
2、因為操作感知時間較長,在本節課的第二個知識目標——找公因數和最大公因數的方法環節就沒有充分的時間將孩子的各種方法展開交流,也是個小小的遺憾。
帶著原有的思考我們做了如上嘗試,然而一節課的時間是有限的,個人業務素養也有待提高,所以沒有做到面面俱到。好在一節課的結束并不意味著思考的終止,我又帶著實踐中的新問題上路了。期待著思考的路上,能得到更多領導、同行們的指點與批評!
《最大公因數》教學反思8
教學 例3時先用邊長6厘米和4厘米的正方形紙片,分別鋪長18厘米、寬12厘米的長方形,教師選擇正方形紙片鋪長方形的活動教學公因數,是因為這一活動能吸引學生發現和提出問題,能引導學生思考。學生用同兩張正方形紙片分別鋪一個不同的長方形,面對出現的兩種結果,會發現“為什么有時正好鋪滿、有時不能”,“什么時候正好鋪滿、什么時候不能”這些有研究價值的問題。他們沿著長方形的邊鋪正方形紙片,就會想到正好鋪滿與不能正好鋪滿的原因可能和邊長有關,于是產生進一步研究長方形邊長和正方形邊長關系的愿望。分析長方形的長、寬和正方形邊長之間的關系,按學生的認知規律,設計成兩個層次: 第一個層次聯系鋪的過程與結果,從長方形的長、寬除以正方形的邊長沒有余數和有余數的層面上,體會正好鋪滿與不能正好鋪滿的原因。第二個層次根據邊長6厘米的正方形正好鋪滿長18厘米、寬12厘米的長方形、而邊長4厘米的正方形不能正好鋪滿長18厘米、寬12厘米的長方形的經驗,聯想邊長幾厘米的正方形還能正好鋪滿長18厘米、寬12厘米的長方形。先找到這些正方形,把它們邊長從小到大排列,知道這樣的正方形的個數是有限的。再用“既是12的因數,又是18的因數”概括地描述這些正方形邊長的特征。顯然,前一層次形象思維的成分較大,思考難度較小,對后一層次的抽象認識有重要的支持作用。
反思:突出概念的內涵、外延,讓學生準確理解概念。
我用“既是……又是……”的描述,讓學生理解“公有”的'意思。例3先聯系用邊長1、2、3、6厘米的正方形正好能鋪滿長18厘米、寬12厘米的長方形紙片的現象,從長方形的長、寬分別除以正方形邊長都沒有余數,得出正方形的邊長“既是12的因數,又是18的因數”,一方面概括了這些正方形邊長的特點,另一方面讓學生體會“既是……又是……”的意思。然后進一步概括 “1、2、3、6既是12的因數,又是18的因數,它們是12和18的公因數”,形成公因數的概念。
由于知識的遷移,學生很容易想到用集合圖直觀形象地顯示公因數的含義。第27頁把8的因數和12的因數分別寫到兩個集合圈里,這兩個集合圈有一部分重疊,在重疊部分里寫的數既是8的因數,也是12的因數,是8和12的公因數。先觀察這個集合圖,再填寫第28頁的集合圖,學生能進一步體會公因數的含義。概念的外延是指這個概念包括的一切對象。
運用數學概念,讓學生探索找兩個數的最大公因數的方法。
例4教學求兩個數的最大公因數,出現了兩種解決問題的方法。學生有的先分別寫出8和12的因數,再找出它們的公因數和最大公因數。有的在8的因數里找12的因數,這樣操作比較方便,但容易遺漏。我有意引導學生選擇第一種。練習五的第3題就是這種方法的應用。
充分利用教育資源,自制課件,協助教學。
限于操作的局部性,我認真制作了實用的課件,讓直觀、清晰的頁面直接輔助我教學,學生表現積極,課堂氣氛比較活躍,提問、釋疑、解惑,練習的熱情很高。
本課設計目的是使學生學習公因數、最大公因數的意義,并學會找兩個數的最大公因數的方法,從整節課學生表現情況和課后作業反饋來看,學生對本部分知識知識掌握較好,學習積極并具有熱情,就實效性講很令人滿意。
《最大公因數》教學反思9
【多問幾個為什么】
1、出差兩天,今日回來,與孩子們繼續暢游《公倍數和公因數》單元。
思維一旦被激發,就有點一發不可收拾。
從第一課時開始,孩子們與我是完全浸潤在了公倍數與公因數的歡樂中。我的態度也從一開始對教材安排的質疑,到現在極力擁護教材的安排。
只有放手給孩子們一個構建的機會,孩子們才能在構建過程中頻頻發起智慧的邀請。
在學習公倍數的時候,課上巧遇“思維定勢”,孩子們以為兩個數的公倍數就是它們的乘積;但是在解決書本上的6和9的公倍數是多少時,猛然發現,這個方法不能次次實施。孩子們提出了一系列猜想。其中小彧發現,如果將錯就錯,把6和9相乘,也可以,但是要除以它們的最大公因數。并且,小彧通過舉例,把這個發現從特殊上升到了一般。
因為當時還未學習公因數,我就躲避了問題的內里。
小何在備學中說,我最大的問題是,我知道小彧的說法是對的,但是為何6和9兩個數相乘,再除以最大公因數,得到的就是最小公倍數,其中的道理是什么?
呵呵,好家伙,知道了是什么,自覺追問了為什么?
明天我們要對本章節的`內容做個整體梳理,我準備結合短除法,讓孩子們意識到小何追問思想的可貴,以及這個方法可行之處究竟是什么。
2、孩子們很愛思考,從第一課時的下課時間開始,就發現兩個數若有倍數關系,它們的最小公倍數很奇妙,就是較大的數。
第二課時,我們通過教材上的習題,一起說了這個規律,即訴說了看到的表面現象。
孩子們還不甘心,提出了問題,為什么兩個數是倍數關系,最小公倍數就是大的那個數呢?
一時安靜后,好幾個孩子舉高手,并說清了原因:大數本身是小數的倍數,大數又是自己最小的倍數,理所應當是兩數的最小公倍數。
3、公倍數的種種猜想,在學習公因數的時候,思想方法得到了遷移。
第一課時,孩子們提出各種猜想,求最大公因數,會不會也像公倍數中兩個數有特殊關系,就能輕松的求出結果?
【孩子們+數學=好玩。】
要做找公倍數的上本子作業了,我板書給孩子們看書寫格式,他們拉著臉。
我說,我小時候,就是寫這么多字的。不過,我可以介紹你們寫一種簡單的,用“【】”包住兩個數,中間用逗號隔開,這樣就能代替寫這么多字。孩子們一看,多方便呀!居然都“啪啪啪”鼓起掌來,哈!
我滿懷愜意的說,你們的掌聲與微笑中包含著對數學簡潔美的追求啊!
孩子們爽歪歪了。
不過事后,一個資深老師告訴我,這個環節,如果讓孩子們創造一下,如何追求簡潔。也許,這樣對于孩子們的思維發展更有效。一想,我也同意這般。
一節課,只要知識目標達成,那么,過程方法與情意目標是不可分割的。學生在達成過程方法目標的旅程中,豈有不快樂,不感受到豐富體驗的?
《最大公因數》教學反思10
教材共提供了三種不同的方式求兩個數的最大公因數,方法一:分別寫出兩個數的因數,再找最大公因數;方法二:先找出一個數的所有因數,再看哪些因數是另一個數的因數,最后從中找出最大的;方法三:用分解質因數的方法找兩個數的最大公因數。我還給學生補充了用短除法求最大公因數。這么多方法,教師應該向學生重點推薦哪種呢?教材中補充拓展的.分解質因數方法學生是否都應掌握呢?短除法是否都應掌握呢?方法一與方法二相比,由于第一種方法便于觀察比較,十分直觀。因此,在課堂教學中許多學生暗暗地就選擇了它。方法二與方法三相比,在數據偏大且因數較多時,如果用分解質因數的方法來求最大公因數不僅正確率高,而且速度也會大幅提高。但是用分解質因數的方法來求最大公因數對一些學生來說又有相當的難度,至于為什么要把兩個數全部公有的質因數相乘,一些學生還不太明白。
在教學中,我認為教師不能僅僅只是介紹,還有必要讓學生們掌握這種方法技能。用短除法求最大公因數我感覺比較簡單,學生好接受,好理解。但是短除法求最大公因數一直要除到所得的商是互質數時為止。如果用此法,學生必須首先認識“互質數”,并能正確判斷。雖然有關“互質數”的內容教材83頁“你知道嗎”中有所涉及,相應知識的考查在練習十五第6題中也有所體現。至于學生選用哪種策略找兩個數的最大公因數,我并不強求。從作業反饋情況來看,多數學生更喜歡方法一,但是我們要提醒學生養成先觀察數據特點,然后再動筆的習慣。如兩個數正好成倍數關系或互質數關系時,許多學生仍舊按部就班地采用一般策略來解決,全班只有少數的學生能夠根據“當兩個數成倍數關系時,較小數就是它們的最大公因數”的規律快速找到最大公因數。在這一方面,教師在教學中要率先垂范,做好榜樣。在鞏固練習過程中,也應加強訓練,每次動筆練習之前補充一個環節——觀察與思考。使學生除了掌握基本策略方法外,還能靈活快捷地求出一些特例來。
這節課本來想把教材練習十五的習題講解完,但是時間不夠用了,只好下節課再講。
《最大公因數》教學反思11
公因數和最大公因數這一課應注重引導學生體驗“概念形成”的過程,讓學生“研究學習”、“自主探索”,學生不應是被動接受知識的容器,而應是在學習過程中主動積極的參與者,是認知過程的探索者,是學習活動的主體。
我是這樣組織教學的:
在教學過程中,我們不僅要求學生掌握抽象的數學結論,更應注重學生概念形成的過程。應引導學生參與探討知識的形成過程,盡可能挖掘學生潛能,能讓學生通過努力,自己解決問題,形成概念。通過創設生活情境,幫助王叔叔鋪地裝,將學生自然地帶入求知的情境中去,在學生已有知識經驗的基礎上放手讓學生去交流、探索。“哪一個正方形紙片能正好鋪滿長16厘米寬12厘米的長方形,為什么?”這樣更利于培養學生自主探索、提出問題和解決問題的能力。接著進一步引導學生思考“還有哪些正方形紙片也能正好鋪滿長16厘米寬12厘米的長方形?”“為什么邊長是1厘米、2厘米、4厘米的地磚可以正好鋪滿?而邊長是3厘米的正方形地磚不能正好鋪滿?”讓學生在反復地思考和交流中加深對公因數這一概念的理解。
教師拋出問題后,讓學生獨立探究。為了解決問題,學生充分調動了已有知識經驗、方法、技能,找出“16和12的公因數和最大公因數”。在這個過程中,由學生自己建構了公因數和最大公因數的概念,是真正主動探索知識的建構者,而不是模仿者,充分的.發掘了學生的自主意識。
思考:
1.增強師生和生生之間的互動
在教學過程中各個環節的銜接不夠緊湊,本課時的教學內容比較枯燥,在課堂上如何調動學生的積極性,活躍課堂氣氛,使學生學的輕松、扎實。今后的教學中,在這一點上要都多下功夫。本課時的教學中,在組織學生交流找“16和12的公因數”的方法時,指名回答的形式過于單調,有的同學沒有選著擺一擺的方法,而是直接用邊長去除以小正方形邊長來判斷,我沒有很好利用學生生成的資源,幫助學生理解,局限學生的思維發展。
2.方法多樣化和方法優化
在組織學生進行交流時,應該注重引導學生有層次地介紹各種不同的方法。同時還要引導學生進行方法的比較和優化。
《最大公因數》教學反思12
本節課,我從學生已有的知識和經驗出發,精心設計一個童話情境,激發了學生的學習欲望。先讓學生動手操作、自學討論,幫助王叔叔選擇地板磚。再思考探索正方形地板磚的邊長與長方形地面的長、寬之間的關系。然后用問題的形式,通過復習16和12的因數,讓學生再找兩個數的因數、找兩個數的公有的因數、找兩個數公有的因數中最大的因數的過程中,發現用邊長1厘米、2厘米、4厘米的正方形都正好鋪滿長16厘米,寬12厘米的`長方形。在此基礎上,引導學生思考1、2、4這些數和16、12有什么關系,同時揭示公因數和最大公因數的概念。
總之,我在教學的過程中,不但復習鞏固舊知,讓學生在不知不覺中學會了新知。而且還讓學生帶著自己的數學現實參與數學課堂,不斷地利用原有的經驗背景對新的問題做出解釋。此過程中我還注意了鼓勵每一個學生參與探索,重視引發學生思考,注重學生間的交流,讓學生用自己的語言表述自己的發現,對于有困難的學生,我從方法上作進一步指導,小組長幫助,生生互幫等。以“學生是學習的主人,教師是數學學習的組織者、引導者與合作者為主。培養了學生動手操作的能力,使他們在愉快的學習氛圍中學會了本節課的內容。
《最大公因數》教學反思13
本課是在學生掌握了因數、倍數、找因數的基礎上進行教學,通過找公因數的過程,讓學生懂得找公因數的基本方法。在此基礎上,引出公因數和最大公因數的概念,為了加深理解,可以進一步引導學生觀察分析、討論,讓學生明確找兩個數公因數的方法,并對找有特征的數字的最大公因數的特殊方法有所體驗。在此過程中要注意鼓勵每一個學生參與探索,重視引發學生思考,注重學生間的交流,讓學生用自己的語言表述自己的發現,但不要歸納成固定的模式讓學生記憶。對于找公因數有困難的學生,教師要從方法上作進一步指導。《數學課程標準》指出:“學生是學習的主人,教師是數學學習的`組織者、引導者與合作者。”在本節課中,我努力將找最大公因數的概念教學課,設計成為學生探索問題,解決問題的過程,這樣設計各個環節的教學流程,體現了教師是組織者——提供數學學習的材料;引導者——引導學生利用各種途徑找到公因數,最大公因數;合作者——與學生共同探討規律。在整個教學的過程中,學生真正成了課堂學習的主人,尋找最大公因數的方法是通過學生積極主動地探索以及不斷地中驗證得到的,所以整節課學生個性得到發揮,課堂成了學習的天地。
《最大公因數》教學反思14
本節課的教學內容是求兩個數的公因數和兩個數的最大公因數的第二課時。教學目標是進一步理解兩個數的公因數和最大公因數的意義,比較熟練地求出兩個數的最大公因數,包括兩種特殊情況。這節課上的非常順利,課堂氣氛活躍,師生互動和諧,取得了較好的課堂教學效果。
上課的第一環節,是復習兩個數的公因數和最大公因數的意義。在復習的過程中,我不是單純地讓學生復述兩個數的公因數和最大公因數的意義,而是讓學生舉例說明。學生說出了許多組數,找出了它們的公因數和最大公因數。在學生舉例的過程中,對它們的意義有了更深的理解。我擇其四組板書在黑板上:4和5,5和6,5和7,7和9。讓學生觀察,這四組數有什么特點。我的本意是讓學生發現兩個數的最大公因數的一種特殊情況,即兩個數的公因數只有1,那么它們的最大公因數就是1。 “我發現兩個數中只要有一個質數,它們的最大公因數就是1。”這是一個大膽的'猜測,雖說是出乎意料,但更使課堂充滿了生機。我讓學生判斷他的觀點是否正確。在小組討論的過程中,有學生提出了質疑,“這個觀點不對,比如2和4,2是質數,但它倆的最大公因數不是1。”又有學生提出3和6,5和10等。我接著又讓學生觀察,這幾組數又有什么特點。通過通論觀察,完成了本節課的另一個教學任務,發現了兩個數的最大公因數的另一種特殊情況,即兩個數是倍數關系,那么它們的最大公因數就是較小的數,學生發現了兩個數的最大公因數的幾種情況,當兩個數都是質數時,它們的最大公因數是1;當兩個數是連續的自然數時,它們的最大公因數是1;兩個數的最大公因數是1,這兩個數可以是質數,也可以是合數,還可以一個是質數,一個是合數,等等。
《最大公因數》教學反思15
1、創設情境引入新知。
我在教學時,改變教材中從單調的計算引出概念的做法,而是創設情景,通過生動有趣的畫面,吸引學生積極思維,其特有的感染力和表現力,能直觀生動地對學生心理起到催化作用,有效地激發了學生探究新知識的興趣,使教與學始終處于活化狀態。
2、合理利用教材。
“循環小數”是學生較難準確地掌握和表述的一個概念,特別是表述其意義的“從某一位起”、“依次”、“不斷”、“重復出現”等抽象說法,學生難以理解。這節課的內容也較多,我打破教材編排順序,將教學內容重新整合,靈活處理教材,先以王鵬喜歡跑步引入計算400÷75讓學生計算發現商中重復出現一個相同的數字,再以王鵬喜歡游泳引出計算25÷22讓學生計算發現商中有兩個不斷重復出現的數字。從而引導學生發現發現商的特點,引出“循環小數”。這樣可以將難點分散,各個擊破。
3、引導學生探索,讓學生成為真正的'參與者。
《數學課程標準》指出:“教師應激發學生的學習積極性,向學生提供充分從事數學活動的機會,幫助他們在自主探索和合作交流的過程中真正理解和掌握基本的數學知識與技能、數學思想和方法,獲得廣泛的數學活動經驗。”數學學習不應是簡單個體接受知識的過程,而是一個主體對自己感興趣的且是現實的生活性主題的探究與發展的過程。在新課中,我首先從生活中的現象入手,再引導學生主動探究數學中的問題,通過讓學生選擇自己感興趣的信息試算、觀察、分析、比較、討論等學習方式充分調動學生多種感官的參與,給學生提供自主合作探究的空間,讓學生全面參與新知的發生、發展和形成過程,使學生真正體驗到探究的樂趣和做數學的價值。
當然,在這節課中也有很多不足之處。如我在教學中過多地注意預設,使教學放不開手腳,環節安排趨于飽和,這樣壓縮了學生思維空間,在今后的教學中,特別是環節預設應在于精、在于厚實。
【《最大公因數》教學反思】相關文章:
《最大公因數》教學反思01-10
最大公因數的教學反思02-07
《找最大公因數》教案09-04
《最大的書》教學反思08-24
《最大的“書”》教學反思04-11
最大的書教學反思04-12
《最大的麥穗》教學反思02-09
最大的“書”教學反思04-12
最大的麥穗教學反思03-29